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§ 1.
Problem Setting.

U (x1, x2, . . . , xn), which we also write in condensed form as U (x), is a real, regular analytic
function of the real variables x1, x2, . . . , xn in a certain region G of the n-dimensional number
space. The points of G, that satisfy the inequality

(1) U (x) ≤ E

for a fixed real E, should form a set E that is homeomorphic to the n-dimensional ball. E is
the interior of E. On the boundary of E, thus on E−E, it is then necessary that U (x) = E.
We further require

gradU �= 0 on E− E,(2)
U < E on E .(3)

Furthermore

(4)
n∑

ρ,σ=1

aρσ (x) dxρdxσ (aρσ = aσρ)

is a positive definite quadratic form, whose coefficients aρσ (x) are regular analytic on G.

Under the given assumptions we consider a mechanical system with the Lagrangian coordi-
nates x1, x2, . . . , xn, with the potential energy U and the kinetic energy

(5) T (x, ẋ) =
n∑

ρ,σ=1

aρσ (x) ẋρẋσ; ẋρ =
dxρ
dt

minimizing a periodic motion with the total energy E. In particular: One can find a curved
arc of E that connects two points A and B of the boundary E − E and which is traversed
back and forth periodically under the system.

1



§ 2.
The Equations of Motion.

The Lagrangian equations of motion of the system read

(6)
d

dt

∂

∂xλ
(T − U) = ∂

∂xλ
(T − U)

or in detail

n∑
µ=1

aλµẍµ = −1
2

n∑
µ,ν=1

{
−∂aµν
∂xλ

+
∂aνλ
∂xµ

+
∂aλµ
∂xν

}
ẋµẋν − 1

2
∂U

∂xλ
.(7)

(λ = 1, 2, . . . , n)

These equations can be solved for ẍ1, ẍ2, . . . , ẍn, because the determinant |(aλµ)| is �= 0. We
define the functions aρλ (x) through the equations

(8)
n∑

λ=1

aρλaλµ = δρµ

and introduce the abbreviation

(9) Aλ,µν =
1
2

{
−∂aµν
∂xλ

+
∂aνλ
∂xµ

+
∂aλµ
∂xν

}
.

Then we have

(10) ẍρ = −
n∑

λ,µ,ν=1

aρλAλ,µν ẋµẋν − 1
2

n∑
λ=1

aρλ
∂U

∂xλ
.

One can reduce this system of n second-order differential equations to a system of 2n first-
order differential equations, by setting

(11) zµ = ẋµ .

The first-order system then reads

ẋρ = zρ

żρ = −
n∑

λ,µ,ν=1

aρλAλ,µνzµzν − 1
2

n∑
λ=1

aρλ
∂U

∂xλ
.(12)
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The right sides are regular functions of x1, x2, . . . , xn; z1, z2, . . . , zn; t in a certain region
H of the (2n+ 1)-dimensional space, that one obtains when x1, x2, . . . , xn are in G and
z1, z2, . . . , zn; t are allowed to vary as you please. Moreover, t does not generally appear in
the right sides of (12) .

If x̄1, x̄2, . . . , x̄n; z̄1, z̄2, . . . , z̄n; t̄ is a point in H, then the system (12) has an exact solution

(13) xρ = ϕρ (t) , zρ = ψρ (t) , (ρ = 1, 2, . . . , n)

for which the initial conditions

(14) x̄ρ = ϕρ (t̄) , z̄ρ = ψρ (t̄)

hold, and one can extend the solution on both sides as far as the boundary of H.1 ϕρ and
ψρ are regular functions of t.

Now, as is well-known, the total energy T + U is constant during the course of the motion.
We consider in particular a motion having the total energy E, so we have

(15) U (x) + T (x, z) = E,

thus because T (x, z) ≥ 0 it follows that

(16) U (x) ≤ E .

This inequality says that the point x is constrained to lie in the closed domain E.

Hence it now follows further, that in the course of the entire motion the velocity components
zρ are bounded. Then we have

T (x, z) = E − U (x) ,

and the right side is a continuous and hence bounded function of x on E. Since T (x, z) is
positive definite, it follows then, that the velocity components zρ must be bounded.2 Thus
the solution (13) comes near the boundary of H for no finite value of t.

1Vgl. E. Kamke, Differentialgleichungen reeler Funktionen (Leipzig 1945), p. 135.
2∑n

ρ,σ=1 aρσ (x)ZρZσ is a continuous function of x and Z, whenever the point x is in F and Z varies on
the unit sphere

∑n
ρ=1 Z

2
ρ = 1. This function thus takes a minimum, which must be positive due to the

positive definiteness of the quadratic form:

0 < m ≤
n∑

ρ,σ=1

aρσ (x)ZρZσ .

If we now let zρ = λZρ, then it follows that
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The motion of the mechanical system with the total energy E is hence, through its initial
position and initial velocity, defined in the entire interval −∞ < t < +∞.

Through the first n equations (13) we obtain a curve xρ = ϕρ (t) , (ρ = 1, 2, . . . , n) which we
call an orbit of the system.

§ 3.
Introduction of New Coordinates in the Neighborhood of a Boundary Point.

Let O be a boundary point of E. To investigate the orbits in the neighborhood of O, we
introduce an affine coordinate system ξ1, ξ2, . . . , ξn with the origin at O, so that at the point
O we have

n∑
ρ,σ=1

aρσdxρdxσ =
n∑

ρ=1

dξ2ρ,(17)

∂U

∂ξr
= 0, (r = 1, 2, . . . , n− 1)(18)

∂U

∂ξn
< 0 .(19)

The ξ-system is determined up to an orthogonal transformation of ξ1, ξ2, . . . , ξn−1.

mλ2 ≤
n∑

ρ,σ=1

aρσ (x) zρzσ

or

mλ2 ≤ E − U,

therefore

∑
z2ρ == λ2 ≤ E − U

m
.
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We write the quadratic form (4), transformed into the ξ-system, in general as

(20)
n∑

ρ,σ=1

aρσ (x) dxρdxσ =
n∑

ρ,σ=1

αρσ (ξ) dξρdξσ,

so that (17) is equivalent to

(21) αρσ (0) = δρσ .

Coordinate-transformed into the ξ-system, the invariant equations of motion corresponding
to § 2 (10) read

(22) ξ̈ρ = −
∑
λ,µ,ν

αρλAλ,µν ξ̇µξ̇ν −
1
2

∑
λ

αρλ ∂U

∂ξλ
, (ρ = 1, 2, . . . , n)

wherein αρλ and Aλ,µν are defined through the equations

n∑
λ=1

αρλαλµ = δρµ,(23)

Aλ,µν =
1
2

{
−∂αµν

∂ξλ
+
∂ανλ

∂ξµ
+
∂αλµ

∂ξν

}
.(24)

Following the physical chemistry practice, we denote the potential energy in all coordinate
systems by the same capital letter U .

While, above all, we are obligated to respect the claim that the total energy of the system
refrains from decreasing, we consider particular solutions to (22), those for which

ξ̇ρ = 0 (ρ = 1, 2, . . . , n)

at the time t = 0; thus, those solutions that begin with null velocity. At each point ξ̄ρ in
the neighborhood of O (with respect to G), there exists a unique orbit that starts there with
null velocity:

ξρ = Fρ

(
t, ξ̄

)
,(25)

ξ̄ρ = Fρ

(
0, ξ̄

)
.(26)

According to existence theorems about solutions of systems of differential equations, the
functions Fρ are analytic in t, ξ̄1, ξ̄2, . . . , ξ̄n in the neighborhood of t = ξ̄1 = ξ̄2 = · · · = ξ̄n = 0.

In addition to (25),

(27) ξρ = Fρ

(−t, ξ̄)
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is also a solution of (22), since (22) does not change under the substitution of −t for t. But
since (25) and (27) satisfy the same initial conditions, both solutions must be identical:

Fρ

(
t, ξ̄

)
= Fρ

(−t, ξ̄) .
In the power series expansion of Fρ, only the even powers of t occur; that is, ξρ is a regular
function of ξ̄1, ξ̄2, . . . , ξ̄n and τ = t2:

ξρ = fρ
(
τ , ξ̄

)
,(28)

ξ̄ρ = fρ
(
0, ξ̄

)
.(29)

Accordingly, we write the power series as

ξρ = ξ̄ρ + cρ
(
ξ̄
)
τ + · · · .

Applying these initial terms to (22) yields

2cρ = −1
2

n∑
λ=1

αρλ
(
ξ̄
)
Uλ

(
ξ̄
)
,

where we have used the abbreviation

(30) Uλ (ξ) =
∂U (ξ)
∂ξλ

.

Thus the expansion reads

(31) ξρ = ξ̄ρ − 1
4

n∑
λ=1

αρλ
(
ξ̄
)
Uλ

(
ξ̄
)
τ + · · · .

In particular, we consider the orbits that begin on the boundary of E. For them the total
energy is E. The coordinates ξ̄ρ of the initial points are then connected with one another
by the equation

(32) U
(
ξ̄
)
= E .

Since U (0) = E and

Ur (0) = 0 (r = 1, 2, . . . , n− 1)

holds, ξ̄n in the neighborhood of O is allowed the expansion

(33) ξ̄n = ψ
(
ξ̄1, ξ̄2, . . . , ξ̄n−1

)
,

whereby in the power series ψ the constant term and the linear terms are missing.
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If ξ̄1, ξ̄2, . . . , ξ̄n−1, τ are given, then, provided the values of these dimensions are sufficiently
small, one can express ξ̄n from (33) and thereafter ξρ from (31) as regular functions of
ξ̄1, ξ̄2, . . . , ξ̄n−1, τ . In consequence of (31), (21), and (18), at the point O we have

dξr = dξ̄r, (r = 1, 2, . . . , n− 1)
dξn = −1

4Un (0) dτ,(34)

so that the transition from ξ1, ξ2, . . . , ξn to ξ̄1, ξ̄2, . . . , ξ̄n−1, τ in the neighborhood of O is an
invertible regular analytic coordinate transformation. The new coordinate system has the
advantage that the coordinate lines are orbits emanating from the boundary of E. However
it is defined only in a certain neighborhood of O.

§ 4.
Introduction of the Riemannian Metric.

As is well-known, the problem is to find the orbits with the total energy E, or equivalently,
to determine the geodesic lines of the Riemannian manifold, which the region E becomes
through the imposition of the metric3

(35) ds2 = (E − U)
n∑

ρ,σ=1

aρσ (x) dxρdxσ .

But observe that the boundary of E does not belong to the Riemannian manifold, because
ds2 = 0 on the boundary. Accordingly, the geodesics of the Riemannian manifold are defined
only on E. A geodesic curve situated in E is also a part of an orbit. However, an orbit in
its course can also contain points of the boundary E − E, so it is not necessarily the case
that it is a geodesic.

In the coordinates ξ1, ξ2, . . . , ξn the bilinear form reads

(36) ds2 = (E − U)
n∑

ρ,σ=1

αρσ (ξ) dξρdξσ .

Denote by S the arc length of the orbit ξ̄1 = const., ξ̄2 = const., . . . , ξ̄n−1 = const., increasing
with increasing τ ; hence we have

(37)
(
dS

dτ

)2

= (E − U)
n∑

ρ,σ=1

αρσ (ξ)
∂ξρ
∂τ

∂ξσ
∂τ
,

3C. Carathéodory, Variationsrechnung und die partiellen Differentialgleichungen erster Ordnung
(Leipzig 1935), §§ 308 and 309.
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wherein ξλ and ∂ξλ
∂τ

are defined by (31). Accordingly,
(
dS
dτ

)2 is a regular function of
ξ̄1, ξ̄2, . . . , ξ̄n−1, τ , vanishing for τ = 0:

(38)
(
dS

dτ

)2

= τB
(
ξ̄1, ξ̄2, . . . , ξ̄n−1; τ

)
.

We determine the constant term in the power series B. According to (21) it is

αρσ (0) = δρσ

and, because of (31) and (18),

(39)
[
∂ξρ
∂τ

]
0
= −1

4

n∑
λ=1

δρλUλ (0) = −1
4δρnUn (0) ;

where the function argument (0) signifies that we are setting ξ̄1 = · · · = ξ̄n−1 = τ = 0.
Furthermore, we have

∂U
(
ξ̄1, ξ̄2, . . . , ξ̄n−1; τ

)
∂τ

=
n∑

ρ=1

Uρ

∂ξρ
∂τ
,

thus

(40)

[
∂U

(
ξ̄1, ξ̄2, . . . , ξ̄n−1; τ

)
∂τ

]
0

= −1
4U

2
n (0)

or

(41) lim
ξ̄1,...,ξ̄n−1,τ→0

E − U
τ

= −
[
∂U

∂τ

]
0
= 1

4U
2
n (0) .

Consequently we obtain

B (0, . . . ; 0) = 1
4U

2
n (0) ·

(
1
4Un (0)

)2 = 1
43U

4
n (0) ,

and therewith

dS

dτ
=

√
τB1

(
ξ̄1, ξ̄2, . . . , ξ̄n−1; τ

)
; B1 (0, . . . ; 0) = 1

23U
2
n (0) .

Taking the root with the positive sign, S must increase with τ , as τ ≥ 0 is increasing. Hence,
through integration it follows that

(42) S = τ
3
2B2

(
ξ̄1, ξ̄2, . . . , ξ̄n−1; τ

)
; B2 (0, . . . ; 0) = 1

12U
2
n (0) .

The constant of integration has been chosen so that for τ = 0, S vanishes on the boundary
of E. From (42) it follows that
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(43) S
2
3 = τB3

(
ξ̄1, ξ̄2, . . . , ξ̄n−1; τ

)
; B3 (0, . . . ; 0) =

(
1
12

) 2
3 U

4
3
n (0) .

Hence S
2
3 is a regular function of ξ̄1, ξ̄2, . . . , ξ̄n−1; τ in the neighborhood of O.

We replace ξ̄1, ξ̄2, . . . , ξ̄n−1; τ with the new independent variables y1, y2, . . . , yn, by means of
the transformation

yr = ξ̄r, (r = 1, 2, . . . , n− 1)

yn = S
2
3 = τB3

(
ξ̄1, ξ̄2, . . . , ξ̄n−1; τ

)
.(44)

At the point O one has

dyr = dξ̄r, (r = 1, 2, . . . , n− 1)

dyn =
(

1
12

) 2
3 U

4
3
n (0) dτ .(45)

Consequently, an invertible regular transformation exists in the neighborhood of O.

Like ξ̄1, ξ̄2, . . . , ξ̄n−1, τ , the coordinates y1, y2, . . . , yn have the property that the parameter
lines, namely y1 = const., y2 = const., . . . , yn−1 = const., are orbits emanating from the
boundary of E. There yn is a function of the arc length S, thus yn = const. can be
interpreted as a parallel surface to the boundary of E.

We shall see, that the surfaces yn = const. (> 0) stay perpendicular to the coordinate lines
y1 = const., y2 = const., . . . , yn−1 = const. Moreover, we note the following theorem of
differential geometry:

If

yρ = yρ (S, λ) (ρ = 1, 2, . . . , n)

are analytic functions of S and λ and, for a fixed value of the parameter λ, the equations
describe a geodesic with the arc length S, then the orthogonal projection of the vectors ∂yρ

∂λ

on the geodesics passing through their base points (that is, on their tangents) is independent
of S.
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In our case, we set

yr = yr (λ) (r = 1, 2, . . . , n− 1)

yn = yn (S)
(
= S

2
3

)
,

so according to this theorem, the orthogonal projection of the vectors
(

∂y1
∂λ
, ∂y2

∂λ
, . . . , ∂yn−1

∂λ
, 0
)

on the geodesic yr = yr (λ) (r = 1, 2, . . . , n− 1) is independent of S. But as S → 0, the
length of the vectors, thus also of their orthogonal projections, goes to zero. That says:
a vector in the y1, y2, . . . , yn-system, whose nth component vanishes, stays perpendicular to
the geodesic yr = const. that passes through its origin.

According to this, in the coordinates yρ the bilinear form reads

ds2 = (E − U)
n∑

ρ,σ=1

aρσdxρdxσ = (E − U)
n∑

ρ,σ=1

bρσdyρdyσ

= (E − U)
{

n−1∑
r,s=1

brsdyrdys + bnndy2n

}
. (bρσ = bσρ)(46)

Since

∂yn
∂S

=
2
3
S− 1

3

must hold for dy1 = dy2 = · · · = dyn−1 = 0, it follows that bnn can be calculated as

(47) bnn =
9

4 (E − U)yn .

For the brs we have

(48) brs (0) = δrs . (r, s = 1, 2, . . . , n− 1)

Then in general

n∑
ρ,σ=1

αρσdξρdξσ =
n∑

ρ,σ=1

bρσdyρdyσ

and at the point O

dξr = dyr (r = 1, 2, . . . , n− 1)
dξn = const. dyn

and
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αρσ (0) = δρσ .

We refer to y1, y2, . . . , yn as a normal coordinate system pertaining to the point O.

In view of the Heine-Borel Covering Theorem, one can now cover the boundary of E with
finitely many normal coordinate systems pertaining to certain points O1, O2, . . . , Om. The
normal coordinate system pertaining to the point Oµ is

(49) y1µ, y2µ, . . . , ynµ .

There these coordinate systems are related to x1, x2, . . . , xn through invertible, regular an-
alytic transformations; thus two normal coordinate systems, (49) and y1λ, y2λ, . . . , ynλ, are
also related through such a transformation, provided the intersection of their regions of def-
inition is not empty. — Note that ynµ as well as ynλ is equal to S

2
3 in E; thus ynµ and ynλ

are in agreement. We can therefore henceforth suppress the second index of yn. yn is a
regular analytic function in the neighborhood of the boundary of E.

If the point set |yn| < ε can be covered with finitely many normal coordinate systems —
for sufficiently small ε that is certainly the case — then we call it a normal neighborhood of
the boundary of E. In the following we will always understand y1, y2, . . . , yn to be a normal
coordinate system pertaining to a boundary point O.

§ 5.
Behavior of the Orbits in the Neighborhood of the Boundary.

Concerning the behavior of the orbits in the neighborhood of the boundary, the following
holds:

Theorem 1. For a given ε > 0 there is a δ > 0 and a normal neighborhood U of the boundary
of E, in which for each orbit with total energy E we have

(50) |ẏn| < ε, ÿn > δ .

Proof. We consider a normal coordinate system y1, y2, . . . , yn pertaining to a boundary point
O. There exists a sufficiently small neighborhood of O, such that for each orbit with total
energy E the inequalities

(51) |ẏρ| < ε . (ρ = 1, 2, . . . , n)

are satisfied therein. Hence it follows from this that

T =
n∑

ρ,σ=1

bρσẏρẏσ = E − U
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goes to zero as yρ → 0, since (bρσ (0)) is the matrix of a positive definite quadratic form (see
footnote 2 on page 3).

To demonstrate the inequality ÿn > δ we use the differential equations of the motion written
in the coordinates y1, y2, . . . , yn. Since the equations of motion are invariant under coordinate
transformations, equation (10) is thus preserved when one replaces xρ with yρ, aρσ with bρσ,
aρσ with bρσ, and Aλ,µν with Bλ,µν ; where bρσ and Bλ,µν are defined through the equations

∑
σ

bρσbσλ = δρλ, Bλ,µν =
1
2

(
−∂bµν
∂yλ

+
∂bνλ
∂yµ

+
∂bλµ
∂yν

)
.

Thus it holds that

(52) ÿn = −
∑
λ,µ,ν

bnλBλ,µν ẏµẏν − 1
2

∑
λ

bnλ
∂U

∂yλ
.

Note that bnλBλ,µν is regular in the neighborhood of O. In consequence of (51), the first
term on the right side of (52) thus becomes arbitrarily small in value, provided only that
one makes the neighborhood sufficiently small. — At the point O the second term in (52)
has the value — see (47) —

− 1
2bnn

∂U

∂yn
=

2
9

(
∂U

∂yn

)2

> 0;

the strict inequality > 0 holds here (and not ≥ 0), because according to (2) we have
gradU �= 0 at the point O. Therefore the right side of (52) has a positive lower limit
in the neighborhood of O. For each boundary point O, one can construct a neighborhood
in which |ẏn| < ε and the lower limit of ÿn is > 0; thus Theorem 1 is proved by applying the
Heine-Borel Covering Theorem.

A corollary of Theorem 1 is

Theorem 2. Let U be a normal neighborhood as in Theorem 1 and let xρ = xρ (t) be an orbit
with total energy E that lies in U for t1 ≤ t ≤ t2. Then

(53) t2 − t1 < 2ε
δ
.

Thus the point described by the orbit cannot dwell in U for a unit of time longer than 2ε/δ.

Proof. From the second inequality in (50) it follows that

ẏn (t2)− ẏn (t1) =
∫ t2

t1

ÿn (t) dt >
∫ t2

t1

δdt = δ · (t2 − t1) .

The left side is thus positive, and from the first inequality in (50) one has

2ε > ẏn (t2)− ẏn (t1) .
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Hence equation (53) follows.

Now let xρ = xρ (t) (ρ = 1, 2, . . . , n) be a fixed orbit with the total energyE (−∞ < t < +∞).
We can introduce the arc length s on it, whereby we let the s-value increase corresponding
to increasing t-values. We assert:

Theorem 3. s increases monotonically from −∞ to +∞ as t traverses the interval −∞ to
+∞.

For proof, let U be the neighborhood of Theorem 1, described perhaps through the inequality

|yn| < η .
We consider the smaller neighborhood B described by

|yn| < η2 .
It follows from (35) and (15) that(

ds

dt

)2

= (E − U)T (x, ẋ) = (E − U)2 .
On E−B now, E − U is larger than a positive number m. Therefore, as long as the orbit
passes through E−B, one has

(54)
∫
ds > m

∫
dt .

Thus the assertion of this theorem is known, if the orbit passes through E−B persistently.

On the other hand, if the curve penetrates into B, then it must previously penetrate into
U, and there is a maximum time interval for which yn (t) < η holds, perhaps the interval
t1 ≤ t ≤ t2 (Fig. 3). According to Theorem 2, we have t2 − t1 < 2ε

δ
. Because ÿn > δ, the

curve yn = yn (t) turns its convex face to the t-axis for this interval. Therefore there is a
certain interval t′1 ≤ t ≤ t′2 (t1 < t′1 < t

′
2 < t2), wherein yn (t) <

η
2 holds; here we have used

the assumption that the curve penetrates into B.
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Now if the orbit penetrates into B only finitely often for positive t, then it lingers in B
for only a finite time. From inequality (54) it follows that lim

t→+∞
s = +∞. On the other

hand, if the orbit penetrates into B infinitely often for positive t, then it also traverses the
bowl η

2 ≤ yn ≤ η infinitely often; whereby, according to the last equation in (44), s always
increases by at least

η
3
2 −

(η
2

) 3
2

on each traverse. Thus it likewise follows that lim
t→+∞

s = +∞. A corresponding conclusion

holds for t < 0.

Now let g be a geodesic curve of finite length in E, that is not contained in a longer geodesic
curve. On the pertinent orbit xρ = ϕρ (t), a finite time interval, perhaps T1 ≤ t ≤ T2,
complies with Theorem 3. ϕρ (T1) and ϕρ (T2) must necessarily be points of the boundary
E − E, otherwise one could lengthen g there. Thus the orbit persists, traversing back and
forth infinitely often, following its destiny, locked down to the geodesic curve g.

§ 6.
Geodesic Convexity.

Let Mn−1 be an analytic (n− 1)-dimensional surface in an analytic n-dimensional Rieman-
nian manifold Mn with the Gaussian coordinates y1, y2, . . . , yn. We take it to be a coordi-
nate surface yn = c = const. and choose the coordinates so that the coordinate lines y1 =
const., y2 = const., . . . , yn−1 = const. cut the surface perpendicularly. That is, the bilinear
form

(55) ds2 =
n∑

ρ,σ=1

gρσdxρdxσ

is obliged to satisfy the conditions

(56) grn = 0 (r = 1, 2, . . . , n− 1) for yn = c .

Then we say that the surface is geodesically convex in the direction of increasing yn at the
point P , if for each geodesic yρ = yρ (s) that comes into contact with the point P , we have

(57) y′′n =
d2yn
ds2

> 0 .

This condition is independent of the choice of the coordinate system. That is, if z1, z2, . . . , zn
is another coordinate system, in which the surface is defined through the equation zn = d
and whose coordinate lines z1 = const., z2 = const., . . . , zn−1 = const. cut the surface
perpendicularly, with zn increasing in the same direction as yn increases, then we have

14



y′n =
n∑

ρ=1

∂yn
∂zρ

z′ρ,

y′′n =
n∑

ρ,σ=1

∂2yn
∂zρ∂zσ

z′ρz
′
σ +

n∑
ρ=1

∂yn
∂zρ

z′′ρ .(58)

Since the geodesics of the surface meet at the point P , we have z′n = 0 at P . Furthermore,
yn − c can be expanded in powers of zn − d as follows:

yn − c = (zn − d) k1 (z1, z2, . . . , zn−1) + · · · .
Thus the derivatives of arbitrary order of yn with respect to z1, z2, . . . , zn−1 are zero on the
surface. Therewith (58) reduces to

(59) y′′n =
∂yn
∂zn

z′′n .

Now since zn is required to increase in the same direction as yn, we have ∂yn
∂zn

> 0; and it
follows that (57) is equivalent to z′′n > 0, as was to be shown.

One can readily express the condition (57) by means of the fundamental values gρσ of the
Riemannian metric of Mn. The differential equations of the geodesics4 read

y′′λ = −
n∑

µ,ν=1

Γλ
µνy

′
µy

′
ν,

where

Γλ
µν =

n∑
ρ=1

gλρΓρ,µν

and

Γλ,µν =
1
2

(
−∂gµν
∂yλ

+
∂gνλ
∂yµ

+
∂gλµ
∂yν

)
.

In particular, for λ = n we have

y′′n = −
n∑

µ,ν=1

Γn
µνy

′
µy

′
ν .

Inasmuch as y′n = 0 at the contact point P , it follows that

y′′n = −
n−1∑
r,s=1

Γn
rsy

′
ry

′
s .

4C. Carathéodory, loc. cit., § 310.
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Now because of (56) we have

Γn
rs =

n∑
λ=1

gnλΓλ,rs = gnnΓn,rs =
1
gnn

Γn,rs

and

Γn,rs =
1
2

(
−∂grs
∂yn

+ 0 + 0
)
.

Thus one obtains in its entirety

(60) y′′n =
1

2gnn

n−1∑
r,s=1

∂grs
∂yn

y′ry
′
s .

Hence the inequality (57) is satisfied for all geodesics touching at P , if and only if

(61)
n−1∑
r,s=1

∂grs
∂yn

y′ry
′
s

is a positive definite quadratic form at the point P .

In the case of our problem, it follows from (46) that

grs = (E − U) brs,
thus, according to (48), at the boundary point O we have[

∂grs
∂yn

]
0
= −

[
∂U (y)
∂yn

]
0
δrs .

Now at the point O, ∂U(y)
∂yn

and ∂U(ξ)
∂ξn

differ from each other only by a positive factor (according

to (34) and (45)) and there we have ∂U(ξ)
∂ξn

< 0, according to (19); thus (61) is positive definite
in a small enough neighborhood of Ȯ.

For a later objective it is necessary, as the metric ds2 of our problem from (46) varies for
0 < yn < γ, that a given surface yn = δ (< γ) be geodesically concave, in other words
geodesically convex in the direction of decreasing yn. This is possible, if instead of ds2 one
uses the metric

ds̃2 = λ (yn) ds2,

where

(62) λ (yn) =

{
1 for yn ≥ γ(

γ−yn
γ−δ

)k

+ 1 for 0 < yn ≤ γ
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and k is a sufficiently large natural number.

We have

λ (γ) = 1, λ (δ) = 2
λ′ (γ) = λ′′ (γ) = · · · = λ(k−1) (γ) = 0, λ′ (δ) = −k .

Note that λ (yn), and therewith the coefficients of the quadratic form ds̃2, are obviously
(k − 1)-times continuously differentiable. The surface yn = δ is geodesically concave in the
direction of increasing yn, provided that k is sufficiently large. Then the quadratic form
(61) for the metric ds̃2 reads

n−1∑
r,s=1

∂g̃rs
∂yn

y′ry
′
s =

n−1∑
r,s=1

∂λ (yn) grs
∂yn

y′ry
′
s

= λ (yn)
n−1∑
r,s=1

∂grs
∂yn

y′ry
′
s +

∂λ (yn)
∂yn

n−1∑
r,s=1

grsy
′
ry

′
s .(63)

Herein the last sum is a positive definite quadratic form, because

ds2 =
n−1∑
r,s=1

grsy
′
ry

′
s + gnn y

′
n
2

is positive definite. Therefore, for sufficiently large k, (63) is negative definite on the spot
yn = δ, because λ (δ) = 2 and λ′ (δ) = −k. Thus the surface yn = δ is in fact geodesically
concave toward the side of increasing yn.

§ 7.
Proof of Existence.

We shall use the following facts from differential geometry. Let Mn be an n-dimensional
Riemannian manifold with three-times continuously differentiable fundamental values ġρσ,
and let R be a compact subset of Mn. Then there is a number d > 0 with the properties5:

1. Two points P and Q of R, whose distance6 ρ (P,Q) is ≤ d, can be joined by a geodesic
curve7, which is determined by being shorter than all other piecewise smooth curves
connecting P and Q. We call such curves connecting P with Q elementary curves,
and d is an elementary length that pertains to R.

5The proof can be found in Seifert and Threlfall, Variationsrechnung im Großen (Leipzig 1938,
Hamburger Einzelschrift 24), p. 97 Note 20. It is shown there for a closed Riemannian manifold R =Mn.
But there the closure is used only in the application of the Heine-Borel Covering Therem, so the unchanged
proof is valid for a compact subset R of an arbitrary Riemannian manifold.

6The distance between P and Q is understood to be the greatest lower bound of the length of all piecewise
smooth curves connecting P and Q.

7If P = Q, the elementary curve consists of only a single point.
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2. Let the elementary curve PQ be parameterized by σ, varying from 0 to 1, proportional
to arc length. Then the point at the parameter value σ is continuously dependent on
σ, P , and Q.

A polygon, whose vertices lie in R and whose edges are elementary curves, we call an
elementary polygon.

We now apply these concepts to our orbit problem. The points of E, for which yn < α holds,
must form a normal neighborhood of the boundary E − E, that is chosen so small, that all
surfaces yn = c, with 0 < c ≤ α, are geodesically convex in the direction of increasing yn.
Let U be the set of those points of E that do not belong to this neighborhood. Just as U is
defined with the help of α, we define three further (closed) regions B, C, D with the help of
the numbers β, γ, δ, where α > β > γ > δ > 0. All of these regions are homeomorphic to
the n-dimensional ball, since one can contract E onto them along the orthogonal trajectories
of the surfaces yn = const. Thus it makes sense to speak of diameters in U, which are
the images of Euclidean diameters of an archetypal n-dimensional Euclidean ball, mapped
topologically onto U (Fig. 4). We denote the sets of the interior points of U, B, C, D by U,
B, C, D.

Now we choose an elementary length for U, and we make it small enough that each elementary
curve whose end points lie in U, lies entirely inB. We consider the collection of the diameters
of U and partition each diameter into N parts so that the distance between successive
partition points is no more than the elementary length and so that the partition points are
continuous with those on the other diameters. This is possible according to the theorem
on uniform continuity, since one needs only to partition the diameters of the archetypal
Euclidean ball into N equal Euclidean parts.

Henceforth we replace the diameters of U by the elementary polygons that one obtains when
one connects successive partition points by elementary curves, and completes these elemen-
tary polygons on both of their end points by the “radial line segments” y1 = const., y2 =
const., . . . , yn−1 = const. of the spherical shell B− U. In this fashion we obtain a family of
curves SB of B. Let B be the maximum length of these curves. — A family of curves SD

of D is produced from SB, when we attach the radial line segments of the spherical shell
D−B to the curves of SB. These curves are all shorter than B + 2b, where b signifies the
length of the radial line segments of the region E−B.
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Hereafter we change the Riemannian metric ds2 in the spherical shell E− C to the metric

ds̃2 = λ (yn) ds2

that is given through (62). We choose k therein large enough that the boundary of D
becomes geodesically convex. We call a boundary surface of a region convex, when it
is convex in the sense of the direction from inside toward outside; thus in the case under
discussion, in the sense of decreasing yn. Both of the boundaries of the spherical shell D−B

are then both geodesically convex. — The curves of the family SD are shorter than B+4b
in the metric ds̃, since λ ≤ 2 on D− C. With respect to the metric ds̃, in D we choose an
elementary length d̃, that is small enough so that the elementary curves, whose endpoints lie
in D−B, themselves belong to D−B. This is possible because of the geodesic convexity
of D − B. That is to say, if there were no such d̃, then there would be arbitrarily short
geodesic curves, whose end points lie in D − B, but which jut out of D − B. Then they
touch the surfaces yn = const., the outsides of D−B, but lie in arbitrary neighborhoods of
D−B. That contradicts the geodesic convexity of these surfaces.

On the curves of SD we turn now to taking the metric ds̃ as the basis for a well-known
contraction procedure8, that consists of two steps:

Step 1: Each curve v of SD is divided into q equal length curves, where q is taken large
enough that the subcurves are shorter than the elementary length d̃. Each of the
curves is replaced by its chord; that is, the elementary curves connecting their end
points.

Step 2: In the thus-resulting q-sided elementary polygons the midpoints of the sides are
marked and are connected through a new elementary polygon, that is completed as an
elementary polygon f (v) of q + 1 sides by running the midpoints of the first and last
sides to the same boundary points as v.

Note that f (v) is shorter than v, except when v is a geodesic.

On f (v) one can apply the same procedure again and thus obtain an elementary polygon
f 2 (v). One can continue in this manner without limit.

The families of curves f (SD) , f 2 (SD) , . . . , that are generated thus from SD, all have the
property of covering D completely, as will be proved in § 8. Hence, in the νth family of
curves there are certain curves, whose intersection with B is not empty. Let the curve vν be

8Worked out in more detail in Seifert and Threlfall, Variationsrechnung im Großen (Leipzig 1938).

The fundamental idea of the existence proof, namely through tightening one of the manifold’s covering
family of curves to construct the desired geodesic, is familiar from G. D. Birkhoff, Dynamical Systems
(New York 1927), where it is used in the construction of a closed geodesic on a convex surface.

Whether the existence of n geodesics going from boundary to boundary can be proved with the method of
von Lusternik and Schnirelmann, I can not say, because the pertinent literature is not at my disposal.
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one such curve v, that still touches B after application of the contraction procedure ν times.
Then we have the formulas

(64) f ν (vν) ·B �= 0; (ν = 1, 2, 3, . . .)

where the point · denotes intersection of sets.

But we also have

(65) f ν (vν+m) ·B �= 0 . (m = 1, 2, . . .)

That is, if this inequality were false, then f ν (vν+m) would lie in D−B, and would stay in
D−B under incessant application of f , since the boundary of D−B is geodesically convex.
Thus f ν+m (vν+m) would be disjoint to B, which contradicts (64).

From the sequence v1, v2, . . . we now choose a subsequence converging to a certain polygon v.
To achieve this, we require only making a selection such that we have convergence of the end
points of the curves of the subsequence (situated diametrically opposite, on the boundary of
D). We denote by vν1 , vν2 , . . . the subsequence thus obtained. Then for all ν we have

(66) f ν (v) · B̄ �= 0 .

That is, if this inequality were false for a particular ν, then f ν (v) would lie in D−B. Then
all but a sufficiently adjacent approximating elementary polygon would also lie in D −B.
Thus we would have

f ν (vνi) · B̄ = 0 for suitable νi > ν,

in contradiction to (65).

From the sequence of the (q + 1)-sided elementary polygons f (v) , f2 (v) , . . . we choose a
convergent subsequence through iterated selection, in which we first ensure that the sequence
of the first vertices converges, then through further selection the sequence of the second
vertices is made to converge, and so on. We denote the limit polygon by w. Since B̄ is
closed, it follows from (66) that

(67) w · B̄ �= 0 .

Note that w is a (q+1)-sided elementary polygon without vertices, thus a geodesic. That is,
if w were to have a vertex, then f (w) would be shorter than w. Hence f ν (v), for sufficiently
large ν, would also be shorter than w. That would stand in contradiction to the fact that
f ν (v) converges to w as ν → ∞, and therewith the length of f ν (v) converges monotonically
downward to the length of w.
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We consider a point on w belonging to B, and from it we follow w outward toward both sides
as far as the first intersection points with the boundary of C. The fragment thus obtained
we call g. It is geodesic in the metric ds and shorter than B + 4b; because in C the metrics
ds and ds̃ are in agreement.

Now let γν and δν be greater than zero and δν < γν . From the numbers γν , δν we construct
the regions Cν and Dν , just as C and D were constructed previously from γ and δ, and a
geodesic curve gν , that goes through B̄, shorter than B + 4b and whose end points lie in
Cν − Cν . We consider a point Rν of gν that belongs to B̄, and the tangent vector eν to
gν at that point. From the sequence e1, e2, . . . we choose a convergent subsequence. Let
e∗ be the limit vector and R∗ be its base point. R∗ and e∗ determine a geodesic g∗. On
neither side of R∗ can one traverse the length B + 4b along g∗. That is, suppose that this
were possible toward one side. Then the thus traversed, closed geodesic curves of the length
B+4b would lie in a certain Cν ; therefore also the geodesic curves of the length B+4b, that
are determined through the neighboring vectors eµ with sufficiently large µ. Hence one end
point of gµ would lie in Cν . But that is not the case for µ > ν.

The lengths, that one can traverse along g∗ from R∗ out toward one side or the other, thus
have the property that they are finite with the upper limits l and r. Hence g∗ is a geodesic
of finite length l + r, that cannot be extended. Therefore, as we stated at the end of § 5,
g∗ goes from boundary to boundary and pertains to a periodic motion of the mechanical
system.

§ 8.
Lemma on Families of Curves.

We must yet convey the proof that the families of curves, that arise out of SD through
repeated application of the contraction procedure, cover D completely.

The families of curves f ν (SD) all have the following properties: They consist of (q + 1)-
sided elementary polygons, the diametrically opposite points belong to the boundary of D,
and their vertices depend continuously on the end points lying on the boundary D−D.

In particular: If P, P ′ is a pair of diametrically opposite points in D−D, and we denote by
(PP ′) = (P ′P ) the elementary polygon that connects P with P ′ in the family f ν (SD), we
denote its vertices by

(68) P = P0, P1, . . . , Pq, Pq+1 = P ′

or also, going out from the other vertex, by

P ′ = P ′
0, P

′
1, . . . , P

′
q, P

′
q+1 = P,

then for a fixed k, the vertex Pk depends continuously on the point P . But from this
property alone it follows that the family of curves covers D.
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For the proof we consider an n-dimensional projective space, endowed with the elliptical
metric. We think of it as a Euclidean space that is closed through the infinitely distant
hyperplane. We subtract the closed unit ball from it and call the remaining space B and
its closed hull B. Then the family of curves f ν (SD) can be associated with a continuous
mapping from B to D, in the following manner:

To begin with, we map the boundary sphere B−B topologically onto the boundary sphere
D−D so that diametrically opposite points are mapped into diametrically opposite points.
When the diametrically opposite points P , P ′ from D−D meet the diametrically opposite
points Q, Q′ from B−B, then we map the projective line segment QQ′ that lies in B onto
the elementary polygon PP ′, so that a sequence of elliptically equidistant points

Q = Q0, Q1, . . . , Qq, Qq+1 = Q′

is mapped to the sequence (68) of the vertices of the elementary polygon, and the subpro-
portions of all the subparts remains preserved.

This mapping is continuous, because according to property 2 on page 18, the point R of D
that divides one fixed elementary line segment PkPk+1 in the proportion σ : (1− σ), depends
continuously on σ, Pk, and Pk+1 and therefore continuously on the boundary point P and σ,
since Pk and Pk+1 depend continuously on P . Finally, P depends continuously on Q , thus
it follows that R depends continuously on Q and σ.

Now each continuous mapping from B to D, that maps the boundary sphere B−B topo-
logically onto the boundary sphere D−D, is a mapping of degree 1 (mod 2). (We must use
the mapping degree mod 2 because B is not orientable for even dimensions n.) Then each
continuous mapping B from B to D, that maps the boundary spheres in the indicated man-
ner, can be deformed into the mapping A, that maps the projective lines that pass through
the origin, hence because they lie in B, into the diameters of D. In order to deform the
mapping B into the mapping A, one has only to connect the image point of an original point
of B under the mapping B with its image point under A in D through a “rectilinear exten-
sion” — rectilinear understood in the original Euclidean sense, with the help of which the
diameters of D were also defined — and, in the rectilinear connecting extensions, the first
image point is allowed to travel to the second image point with constant speed in the unit
time interval. Clearly the mapping A is a mapping of degree 1, since it maps the entirety of
B topologically onto D with the exception of the infinitely distant hyperplane of B, which
is mapped into the center point of D. Since the mapping degree does not change under
deformation, it follows that the aforementioned mapping B is also a mapping of degree 1,
and therefore each point of D is the image of at least one point of B; that is, at least one
curve of the family fν (SD) passes through each point of D.

(Received on the 2nd of February 1945.)
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