An offprint from the

DUKE
MATHEMATICAL
JOURNAL

Duke University Press
Durham, NC 27708 4
U.S.A.



Vol. 55, No. 4 DUKE MATHEMATICAL JOURNAL ©  December 1987

HAMILTONIAN STRUCTURE FOR THE MODULATION
EQUATIONS OF A SINE-GORDON WAVETRAIN

N. ERCOLANI, M. G. FOREST, D. W. MCLAUGHLIN, AND
R. MONTGOMERY

I. Introduction. We study the sine-Gordon equation,
e(02 - 32)u+sinu=0, (1.1)

where ¢ is a small parameter.! This equation is an example of a conservative,
nonlinear, dispersive wave equation which enjoys the additional special property
that it is integrable as an (infinite-dimensional) Hamiltonian system. It has exact
solutions in the form

u(x,t) = WN(-g(x,t);?,a). (1.2)

These solutions (1.2) depend upon 2N real parameters k = (k,..., ky) and
& = (wy,..., wy) and N “phases,”

0,(x,) =kx + w;t + 6.

The x and ¢ dependence enters the waveform (1.2) only linearly through these
phases. For each ¥ and &, W), is a real function on the N-torus TV (2ar-periodic
in each 8,/¢), which has an explicit representation in terms of the Riemann theta
function. Because of this 2« periodicity, the parameters ¥ and & are interpreted
as spatial wave numbers and temporal frequencies.

Thus, (1.2) represents a (real) 3N-dimensional family of exact solutions of the
sine-Gordon equation, each member of which is quasiperiodic in both space and
time. We call this family of solutions the “N-phase, quasiperiodic waves.” When
N =1, this family reduces to the well-known “periodic traveling waves” for the
sine-Gordon equation. Because ¢ is small, these traveling waves are rapidly
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1For small e, fhis problem is equivalent to the sine-Gordon equation Uy — Uyy + sinlU = 0 on
asymptotically long spatial and temporal scales, X = x/e and T = t/e. We prefer the scaling (1.1) for
fixed x and t as ¢ = 0.
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oscillating, with spatial and temporal periods 0(¢) on the x and ¢ scales. For
N > 1, solutions (I.2) should be thought of as N traveling waves in interaction.

As a solution of the sine-Gordon equation (I.1) evolves in time from initial
data which is localized in space, it organizes (through a dispersive mechanism)
into rapidly oscillating wavetrains [Whitham (1974)]. Although these wavetrains
are not exactly given by N-phase, quasiperiodic solutions of (I.1), they very
closely resemble members of family (1.2). The main difference between these
emerging wavetrains and solutions (1.2) is that the wavetrains have physical
characteristics such as wave numbers and frequencies which change slowly over
large distances in space and time. If these emerging wavetrains were to be
represented in the notation of (1.2), ¥ and & could not be constant, but would
have to be slowly varying functions of x and ¢, K =K(x,1), & = &(x,1).
Formula (I.2), with parameters which vary with x and ¢, is no longer an exact
solution of the sine-Gordon equation (1.1).

In linear theory this situation is well understood. Localized initial data flows
into nearly monochromatic wave packets. These wave packets are constructed
mathematically with asymptotic methods such as geometrical optics, WKB
theory, and stationary phase. These methods yield transport equations for the
evolution of the amplitude and phase of the packet.

The mathematical problem is to construct an asymptotic solution of the
sine-Gordon equation (L.1) in the form of a slowly varying N-phase wavetrain.
This construction will produce evolution (transport) equations for the slowly
varying wave numbers ¥(x,) and frequencies &(x,t). We will call these
equations for ¥(x, t) and &(x, t) the “modulation equations.”

1. A. Historical background. In the single (N = 1) phase case, this mathe-
matical problem is essentially solved. For a general class of nonlinear dispersive
wave equations, [Whitham (1974)] derived the modulation equations for slowly
varying traveling waves. He used two beautiful methods: first, he averaged
conservation laws [Whitham (1965)); later, he averaged Langrangians [Whitham
(1974)]. The formal construction of a solution in the form of a slowly modulated
traveling wave was given later by [Luke (1966)]. This construction was extended
to the multiphase case by [Ablowitz and Benney (1970)].

[Whitham (1974)] describes the properties of the single phase modulation
equations. These are first-order, nonlinear partial differential equations. When
they are strictly hyperbolic, the slowly varying traveling wave is modulationally
stable; long wavelength instabilities (related to “modulational” and “side-band”
instabilities) arise when this strict hyperbolicity is lost. When the modulation
equations are strictly hyperbolic, the distinct characteristic speeds are interpreted
as the nonlinear generalization of-group velocity. For the general nonlinear
dispersive wave equations, most of the additional analysis of the modulation
equations is restricted to the small amplitude, nearly linear regime.

However, when the underlying nonlinear wave equation is integrable (e.g., a
soliton equation), its modulation equations enjoy special properties. For example,
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Whitham studied the modulation equations for the traveling waves of the
Korteweg-de Vries (KdV) equation. Since the KdV equation is third-order in
spatial derivatives, its traveling waves are a four-parameter family of solutions; in
addition to «, w, and 6, the mean of the waves (u) must be included in the
parameter list. The modulation equations are a strictly hyperbolic system for
three unknowns—(k, @, (u)). Even though there are three state variables,
[Whitham (1974)], and later [Miura and Kruskal (1974)], explicitly found Riemann
invariants which diagonalized these modulation equations for KdV. This Rie-
mann invariant form of the KdV modulation equations was used in [Gurevich
and Pitaevskii (1974), Fornberg and Whitham (1978)] to study the conservative
smoothing of shocks.

We now understand that the Riemann invariant form of the KdV modulation
equations is a direct consequence of the integrability of KAV with the inverse
spectral transformation. [Flaschka, Forest, and McLaughlin (1980, 1981)] derived
an “invariant form” of the modulation equations for N-phase KdV wavetrains in
terms of Abelian differentials. Other equivalent forms of the modulation equa-
tions quickly follow from this invariant form. In particular, the Riemann in-
variant structure is immediate. In later work [Forest and McLaughlin (1983), and
Forest and Lee (1986)], this invariant representation of the modulation equations
was extended to the sine-Gordon equation (1.1) and the nonlinear Schrédinger
equation. Clearly, these methods apply to any of the soliton equations. To date,
only these soliton equations have N-phase modulation wavetrains. For these
soliton equations, inverse spectral theory provides nice representations of the
solution of the Cauchy initial-value problem. In the KdV case, [Lax and
Levermore (1979, 1982)] used one of these representations to show that the
modulation equations govern the (weak) limit of zero dispersion. [Venakides
(1985)] used another of these representations to capture the oscillatory structure
itself. The status of modulation equations for integrable waves is surveyed in
[Ercolani, Forest, and McLaughlin (1984) and McLaughlin (1980)].

I.B. Summary of wave results. In this paper we focus on one property of the
modulation equations—their structure as a Hamiltonian system. In the single-
phase case [Hayes (1973)], and also [Whitham (1974)], placed the single-phase
modulation equations in a Hamiltonian form which had a particularly interesting
symplectic structure. However, these authors did not relate the full Hamiltonian
system to a reduced one for the modulation equations; rather, they placed the
reduced equations in Hamiltonian form. [Forest and McLaughlin (1979)] devel-
oped a formal and very heuristic description of the reduction process. In fact, it
was with this final reduction process that they first obtained the N-phase
modulation equations for the sine-Gordon equation. (The derivation presented in
[Forest and McLaughlin (1979)] was done after this heuristic reduction.) In this
present work we return to that early reduction and improve and complete it.

There are two main results in this paper. The first appears in section I, where
the modulational Poisson structure is constructed by a natural reduction of the
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Poisson structure for the original sine-Gordon system (Prop. V.3). Though we
only study the sine-Gordon system here, this reduction process is rather general
in that it can be applied to any Hamiltonian system having a family of N-phase
solutions. The only examples known to date are soliton equations.

However, in the special case of an integrable PDE, such as sine-Gordon, the
Poisson structure is very rich. For example, canonical variables are built out of
conformal ingredients such as differentials on Riemann surfaces and theta
functions. Analytic constructions appear at many other levels of the theory. Of
course, on the one hand, this is merely a consequence of the spectral theory used
to integrate these systems. On the other hand, from a strictly Hamiltonian
viewpoint, these analytic objects seem alien. We feel, therefore, that it is reason-
able to inquire whether these conformal constructs have a natural meaning in the
purely Hamiltonian context of a phase space. Our second main result is a step in
this direction. We obtain a useful spectral representation of the vector fields
8w, /80, associated to the angle variables 6, on a Liouville torus. Precisely,

8Wn=_l—/dp,.f(p,)
80, 2w/,

where f(p)/R(p) is the usual squared-eigenfunction representation of a tangent
vector. The loop integral f, is a certain continuous superposition of these
eigenfunctions. This result is the key step for a long computation in section VI
that derives the modulational Poisson structure in terms of conformal ingredients
directly from the structure obtained by reduction in section V.

We conclude this introduction with a comment about the origin of the slowly
varying modulations of a conservative dispersive wave. These modulations are
somewhat subtle. With no “external” perturbation such as dissipation present,
the wavetrain itself is an exact solution of the full equation. Why does it
modulate? The answer is that dispersion causes initial data to filter into wave-
packets; these wavepackets in turn share and couple excitations among neighbors
in parameter space; this coupling generates modulations and dispersive spread-
ing. Although this coupling and transport process is clear in linear wavepacket
theory, it is often misunderstood in nonlinear theory. Here we emphasize that
this coupling in parameter space is captured by the Hamiltonian form of the
modulation equations; in particular, the coupling is the origin of the modula-
tional symplectic structure (as discussed in section V).

II. N-Phase quasiperiodic waves. In this section we summarize the represen-
tation of “N-phase, quasiperiodic waves” for the sine-Gordon equation (1.1). For
more details, we refer the reader to [Forest and McLaughlin (1982, 1983)],
[Ercolani and Forest (1985)}, and [McKean (1981)].
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FIGURE 1

The sine-Gordon equation has exact solutions in the form

0():’ ) : E). (I1.1a)

u(x,t) = WN(

Here E = (E,, E,,..., E,\) € C?¥ are parameters which are constant in x and
t and which satisfy the reality constraints that E; are either negative-real
(E; € (— 0, 0)) or occur in conjugate pairs E, E;,, = E;*. The phases § and the
waveform W), are constructed from the Riemann surface # = (E, R(E)), where

R*(E) = R¥E,E) = Eﬁl(E - E). (I1.1b)

This construction is as follows: Let (a;, b,), i =1,2,..., N denote a particular
basis of homology cycles on # (see Fig. 1) [see Ercolani and Forest (1984)].

On this Riemann surface we define two (unique) Abelian differentials ) and
(1108

[y

Mr(x) N
Q) = __(1 +(-1) 16E)kl:[1(E_ c,‘(x))R(E)
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where the constants I'®), T are given by

(x)—llnE Hc(x)
Jj=1

T® = .‘/ nE nc(r)
Jj=1 Jj=1

and ¢, ¢{) are defined by the normalization conditions f, @ =0, [, =0
M is the charge of u.

In terms of these differentials, the wave numbers & = x(E ), the frequencies
&= w(E ), and the phases g are given by

x(E) = [2

w(E) = [20

0,(x,t) =Kkx + wit + 69, (1.1¢)

from which we see that the 2N parameters E= (E,, E,, ..., E,y) are equivalent
to the more physical parameters ¥(E) = (x,,..., ky) and B(E) = (wp,..., Wy).
The only way x and ¢ enter the waveform W), is (hnearly) through the phases 8,.
For each E the waveform W), is a real functlon on the N-torus T¥, which is
given explicitly in terms of Riemann theta functions (see [Forest and McLaughlin
(1983)D);

W,:TY >R by W, = W,(6; E). (11.1d)

Thus, the family of real, N-phase, quasiperiodic waves (II.lg) is 3N-real-
dimensional, parameterized by (E, 8®), or equivalently by (¥, &, §©).

II1. The modulation framework. To modulate the wavetrain, we allow E,
while satisfying the reality constraints, to depend upon x and ¢,

E=E(x,t); (I11.1a)

we construct ¥ and & from E(x, ) through (II.1c),

k(x,1) =i, (E(x,1)) = fb.g(x)

w(x,1) = w,(E(x,1)) = jszw (111.1b)
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Then we make an ansatz for the wave u in the form

6(x,t) -
u(x,t) = WN(—(e—z; E(x, t)) + 0(e), (I1L.1¢)
where
8, =¥(x,1)
8,=&(x,1). (111.1d)

Clearly, for consistency of (I11.1d), the wave numbers K(x, ¢) and the frequencies
&(x, t) must satisfy '

—

K =5, (111.2)

Equation (I11.2) provides N evolution equations among the 2N variables E=
(E, E,, ..., E;5) We need N additional evolution equations in order to close
this system. These can be deduced from the demand [McLaughlin (1981), Forest
and McLaughlin (1983)] that
6(x,t) -
Or0) = 1y 22 B 0)

satisfy the sine-Gordon equation (I.1) with an O(e) error, valid for times t = 0(1).2
In this manner (II1.2) is closed by adding N equations, which can be placed in
the form [Forest and McLaughlin (1983)]

J, = 9, grad;h, (111.3)
where
h=h(% J)=HWy(-, E))|E=E(ﬁ) (I11.4)
and H(u) is the sine-Gordon Hamiltonian
. b e |ul
= | |\5+5+0- . ,
H(i) = lim — [_L[ o+ 5+ (1 - cosu)| dx (I11.5)

2In the equivalent scaling,

Upp — Uyy + sinu=0, Wy

(—-—-——5(6)(, 1, E(eX eT))

satisfies the equation with an 0(¢) error, valid for times T = 0(¢~").
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In these modulation equations (I11.2) and (I11.3), (x, &, T ) are defined in terms of
the basic parameter E = (E,,..., E,,) by

= /; Q)

= f Q®
b,

i
= — (x)
J, - /;nln AQM(A). (I11.6a, b, ¢c)

Equations (III.2) and (I11.3) provide 2N equations for the 2N parameters
E= E(x t). The map E - (x, J) is invertible, so we can write E = E(x J) as
in (I1IL.4).

_, Equations (II1.2) and (III.3) provide 2N equations for the 2N parameters
E=E (x, t) By manipulation [Forest and McLaughlin (1983)], these modulation
equations® (I11.2) and (II1.3) can be placed in Hamiltonian form

K, = d,gradsh
J, = 9, grad.h. (111.7)

Thus, the modulation equations for a slowly varying, N-phase wavetrain are a
Hamiltonian system with canonical variables the wave numbers ¥ and the
“actions” J, together with a Poisson structure generated by the skew symmetric
differential operator J = I13/dx. The wave numbers and the actions are defined
in terms of E through the basic differentials 2 and Q), by (IIL6). The
Hamiltonian h (Equations (IIL.4) and (IIL.5)) is the sine-Gordon Hamiltonian
evaluated on_the N-phase quas1per10d1c waves and viewed as a function of &, J.
The actions J and the frequencies & are related [Forest and McLaughlin (1983)]
by

& = gradsh. (111.8)

(I11.8) shows the equivalence of (II1.2) and (II1.6a).

In [Forest and McLaughlin (1983)], the Hamiltonian form (IIL.7) of the
modulation equations was obtained by a manipulation of the invariant represen-
tation 9,2 = 9 Q0 of the modulation equations. In the next section we
deduce thxs Hamlltoman form of the modulation equations, together with the
“modulational Poisson structures” generated by I3, directly from the standard

3Actually, the most useful form of the modulation equations is the “invariant representation”
[Forest and McLaughlin (1983)] 3,2( = 3, from which the Hamiltonian form (IIL.7) follows.
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Hamiltonian form of the sine-Gordon equation. Although formal, this derivation
represents a substantial improvement from the heuristic arguments of [Forest and
McLaughlin (1979), Appendix A].

1IV. Hamiltonian structure. We can write the sine-Gordon equation (L.1) as a
Hamiltonian system:

eu, = Jgrad H*, (Iv.1)
where ¥ = (u, v) represents the canonically conjugate fields, J = (_‘1’ (1)), and
the Hamiltonian

2 2,2

v &u
HaEHW):fdx[?J' 2

+ (1 — cos u)] (Iv.2)

Throughout this section we assume that the field # lives in a phase space # of
functions of x, which die off as x — oo sufficiently fast that integration by parts
is justified.

In this framework, we consider the modulational ansatz as defining a manifold
#A*° which is embedded in the phase space & in an e-dependent way. This
manifold will be coordinatized by 3N funqions of x, (6(x), E(x)), with E
subject to the reality constraints and with § subject to the constraint 3.0 =

®( E(x)). The modulation equations are related to a flow on .#°.
The modulational ansatz now takes the form

e WN(ﬂ(:); —»(x))
vt = 3(E(x)) - vWy, (IV.3)

where v = a/ 36 and where the E (x) are fixed (nice) functions which satisfy the
reality constraints. To obtain the Hamiltonian structure of the modulation
equations, we use this e-dependent embedding (IV.3) to pull back the standard
Hamiltonian structure on & to .#°, and then evaluate the result asymptotically
as ¢ = 0.

The canonical one-form pdq on (u, v) space is written in (u, v) coordinates as
v du. Its value on a variation (tangent vector) (8u, 8v) is

f v(x)8u(x) dx. (IV.4)

Pulling this back by our e-dependent embedding yields the one-form v, du, on
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A ¢. Its value on a variation ( 86, 8F ) is found by noting that

1 X 9w 2N 9w

= — — 88 —8E/
du, & 60i80 + ,-?1 3E18E'
Then
1, . Noow
f023u5= :f(w . V)WN (Igl —ﬁso ) dx + 0(1),
1 .
= = [I(x)86/(x) dx + 0(1),
where
N AW 1. L AWl _
i = J ~| — _ - .
50) = T EE) 507 9, E0)) g1 190, E)

Note that the 0(1) term does not contain any variations of i(x). We evaluate
the leading order term asymptotically as e — 0 by making the ergodic hypothesis

JI(x) 86%(x) dx ~ [(IE(x)) p8(x) dx + 0(e),

where the brackets “( )” denote the phase average at constant parameter value
E = E(x):

) ey = (—217 [l | £ wi®)’

Wy - o W,

A T AN,
557 (6 ) a™e.

(IV.5)

Remarks.
1. The functions

Ji(x) = <Ji!(x)>i(x)

constitute a vector f(x) called the wave-action density. f(x) seems the natural
action from the point of view of canonical coordinates on ¢ However, its
representation (IV.5) is not very useful. [Forest and McLaughlin (1979), (1983)]
found a more useful expression (IIL.5) for the wave-action density. In sections
IV-VII we show that these two expressions agree.

2. For N =1, the validity of the ergodic hypothesis can be proved,
provided 98/dx is never zero (or has a finite number of finite-order zeros),
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by a stationary-phase argument. For N > 1, one can attempt to extend
the stationary-phase argument, but the condition 80/3x # 0 must be re-
placed by the infinite number of nonresonance conditions ¥ - ¥(x) + 0, where
ye€ZV - {0)and K = v0. A K-A-M type argument can be attempted in order
to take care of these resonances, and might prove the validity of this ergodic
hypothesis if we put some restrictions on x(x), such as

d [ ¥(x
(¥R ) L,
dx \ (x|
We believe the ergodic hypothesis holds for N = 2.
Using the wave-action density, we can summarize our calculation by

1 - -
v.du, ~ =7 - db (IV.6)

where we have dropped the term of order 1. Note that J depends on x only
through E=E (x). It is known that the map E- (x(E ), J(E )) is mvertlble S0
that the exact N-phase waves can also be parameterized by x, J and 00 Thus the
space 4 ° of modulated waves can be reparameterized by functions (E(x), f(x)).
Now there are no constraints on 6, and the only constraints on J are those
induced by the reality constraints on E. Note that the reparameterization

(6(x), E(x)) - (6(x), J(x))
is only invertible when we constrain 8 of (8, E) by 6, = ¥(E(x)); otherwise, it is

a many-to-one map.
Differentiating (IV.6), we obtain

1y
du, A dv,~ — Y dé' A dJ,. (1.7
i=1

This is the highest-order term in the asymptotic expansion for_the canonical
two-form on .#°. Evaluated for a pair of variations (801, 8]1) (802, 612) in A2
this two-form gives the number

% J{88,(x) - 87;(x) - 88,(x) - 87;(x)} dx + 0(1).

V. Canonical properties of 4% In the last section we showed that the
modulation manifold ¢, which is embedded in # by the e-dependent embed-

4Forest and McLaughlin’s expression for J must be used to see this.
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ding (IV.3), inherits a canonical structure from that of &. In particular, we found
that .#° could be coordinatized by (8(x), J(x)), with one- and two-forms given
by

—

1—-’
v, du, ~ :J-dﬁ

’ 1 N .
du, Ado,~ — Y, db, A dJ,. (V.1a,b)

i=1

In this section we analyze some consequences of this canonical structure on #¢.
Now consider the act of shifting phases on #*:

8(x) > 06(x)+8, 6,1V
J(x) fixed. (V2)

This is a torus action which leaves the one-form J - d§ invariant, and hence is a
canonical torus action on %, at least to leading order in e. (If we simply drop
the higher-order terms in the expansion of the two-form, or assume the ergodic
hypothesis applies to these higher-order terms, then this torus action is, respec-
tively, exactly canonical or canonical to first order.) By the standard theory of
momentum maps [Abraham and Marsden (1978), Ch. 4.2] the momentum map,
or Noether-conserved quantity, for this action is

1 -
_ N
st(x)dxeR .

We can also (P01sson-) reduce by this torus action to obtain the brackets on
K(x), J(x) space. The (Poisson) reduction of a phase space by a canonical group
action is the quotient space. In _our case, the quotient space .#°/T" can be
identified with the pairs (0 =K, J ); taking the x-derivative of 0(x) + 00 annihi-
lates the constant phase shift 00

Poisson brackets on the reduced phase space are computed as follows: Take
two functionals F and G of ¥ and J. _Consider them as functions of §and J
through the relation 0 = K. Take their (0 7 ) Poisson brackets and then re-express
this bracket in terms of % and J. Specifically,

F(0(x), J(x)) = F(8,(x), J(x))

F = Fo(d,,identity).
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DjF = D.Fo 3@,
0.5 55
= fxsz' _

SF oF

8 * 8%’
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and similarly for G(8(x), J(x)) = G(8,(x), J(x)). Formula (V.1) says that §
and J are canonically conjugate (with a factor of ¢ in front), so

oF 6G oG aF

— s — - ) —
A RV R FY.

(F,G}(%,J) = {F,G}(9, J) (by definition of the reduced bracket)

This Poisson bracket was found earlier by [Forest and McLaughlin (1979)]. From
the general theory of reduction, the momentum map 1/¢ {J(x) dx should be a
Casimir for this bracket. This can be seen by hand: Set

I'= %f]‘(x)dx.
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Then

= =0, - = .
8k 8J7 &/

So

;‘I‘ 38dx0
{’} fxsx

(assuming fields die off sufficiently at infinity).

Finally, for all of this to be of any use, the Hamiltonian must be phase-shift-
invariant so that it can be considered a function of ¥ and J and not ;. This will
not be exactly true, but it will be to highest order if we make the ergodic
assumption for H. We write this result as

H(%, J) = [¢hy(#(x), J(x)) dx

We summarize the discussion of sections IV and Vin a

PROPOSITION.  Assume that the ergodic hypothesis holds for the canonical one-
form v, du, and for the Hamiltonian H on M *. Then

1 X ,
(A) b, du, = — Y. J.dé' + 0(1), (V.3a)

i=1

where J, is the wave action given by phase averaging (IV.5).
Drop the O(1) term in v, du,. Then the torus action (V.2) is a canonical action on
M. The correspondmg Pozsson-reduced space M*/TV is identifiable with

pairs of functions (¥(x), J(x)) The Poisson bracket on this phase space is given by

F,G J oF a 56 _ % d oF d V.3b)
(F.G} e J)=ef| gz 8 = 57 gz | dx. (V.
The N functionals
7= J(x) dx V.3c)
—ef x (V.3c

compose the momentum map for the torus action and are also the Casimirs for the
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Poisson bracket. The modulation equations can be written in the Hamiltonian form

F={F H}
or
SH
=ed,—=
*oJ
- SH
J=ed,sx. (V.3d)

We close this section with a comment about the nature of the modulational
Poisson structure as generated by the skew-symmetric operator Id,. We focus on
the Hamiltonian form of the modulation equatlons (V.3d). Whﬂe the Hamilto-
nian H does not depend on 8, it does depend upon k; hence, it depends upon 9
This dependence couples a wavetrain located at (x) with its neighbor located at
(x + dx). This coupling induces the modulations through (V.3d), and eventually
leads to phenomena such as “dispersive spreading.”

VL. Spectral representation of GradyW,. In section IV we derived the action
J ) Equation (IV.5),

1
2m)"

by pulling back the canonical structure onto the modulation manifold #°.
Although its derivation is canonical, Formula (IV.5) for the action gJ ) is far less
explicit and less useful than the representation of the action J in terms of
Abelian integrals, Equation (IIL.6c),

J;

T~{[( (E) - Vo) Wy(8; E)] WN(0 E)} d™g, (Vila)

= _—] In AQ®(A). (VL.1b)

In the next two sections we use the theory of the spectral transform to express the
action (J %, as defined by (VL.1a), in terms of spectral variables; thus, we show
that {(J ) has _a compact expression in terms of Abelian integrals. In fact, up to
sign, ( J; Y = J which we show in section VII. First, in this section we derive a
new spectral formula for /06, W,.

VI.A. The inverse spectral representation. The space of N-phase waves W)
(§1), on which the modulation theory is built, can be coordinatized by the data of
a spectral problem. This spectral problem [Ablowitz, Kaup and Newell (1974),
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Fadeev and Takhtajian (1974)] has the form

£(i,E)y =0,
where % is the N-phase wave, E is the eigenvalue parameter, J: (x, E ) =
($1,¢¥,)T € €2, and & is a 2 X 2-matrix differential operator in x. It is a fact
[Forest and McLaughlin (1983), Daté (1980)] that # is N-phase if and only if
there exist Y(E), ¢(E) in the E-eigenspace of .2 (4, E) for all E such that

g(E) = ¢1¢y, R(E) = —¢,¥,

are polynomials of degree N in E. Thus we have, possibly after a normalization,

8(8) = = [T(E - k) = ~(EY + GEN 1+ - +Gy)
h(E) = ll—l![l(E ~v)=(EY+ HE "'+ ... +H,). (V1.2)

The coefficients {G;, H;} depend on x and ¢ through the wave u. They are
equivalent to {u,, »,}, the former being symmetric polynomials of the latter. It is
also true that

f(E) = %(4’1‘!’2 +¥4,) = ‘/E(FlEN_l + .- +FN)’ (VL3)

and
2N
f?—gh=TI(E-E)=s*E) (V1.4a)
k=1
is a polynomial whose roots { E,,..., E,,} are invariant under the sine-Gordon
flows.
These eigenvalues {E,, ..., E,, } were already mentioned (§1) in our parame-

terization of N-phase waves. The main point of the spectral coordinates is to
replace (0, ..., 8y) in our earlier parameterization by (g, .., ty)-

This might appear to be a needless complication of affairs. On the contrary, the
spectral coordinates are fundamental to _the integrable structure of sine-Gordon
and even to the definition of the angles 4.

These p-variables have analogues in the classical work of Jacobi on integra-
bility; this classical viewpoint has been revived by many people recently, with a
special emphasis on its connections to algebraic geometry. It is these connections
which enable one to carry out computations. We will briefly review them below.



MODULATION EQUATIONS OF A SINE-GORDON WAVETRAIN 965

The remainder of this section proceeds in three parts:
VLB Changing coordinates to spectral variables
VI.C Translation invariant vector fields

VI.D A fundamental formula.

VI.B. Spectral coordinates. Because u = Wy, is real and quasiperiodic, it
follows that the roots of f2 — gh, {Ey,..., E;5}, are all distinct and satisfy the
“reality constraints”: either E, is real and negative or, if E; & R, then E, is
nonreal and E* = E; for some j + i. Since the E, are invariant under the
sine-Gordon flows, the level sets { E; = const}?¥| in function space are invariant
sets for these flows.

Comparing coefficients in (IV.3),

f 2 - gh = S2,
we desire 2N polynomial equations for the 3N complex variables (G,,...,

Gy, Hy, ..., Hy, F,,..., Fy) which define the N-dimensional level sets of con-
stant E,, denoted .4 z. When ¥ is real-valued the variables satisfy the constraints

G, = Hx*, F; real.
We will call such points in C3" “real points” and will use them at several times.

However, to describe our constructions it is easier if we allow these variables to
be complex. The level set A4 i is locally coordinatized by

{(r1s s(r1))s-oos (ys s(y)) }: (V1.4b)

{(1s» 5(p;))} determine g and f; h is then determined from f2 — gh = s2. (For a
more detailed discussion of this see [Mumford (1983)].)
Replace s(p) by

R(p) = us(n).
Let # be the Riemann surface of R(p). The level set A 3 is isomorphic to
(2~ {o})®™ (VL5)

(( )™ denotes the N-fold symmetric product), which is locally coordinatized by
(V1.4). To pass from the coordinates (VI4) to the complex angles 8, we
introduce the Abel map:

O: RM > Jac(R) = CV/A:

(P = (10 R(1))) Py + - +Py >
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Definition of terms and remarks:

(i) A canonical basis a,,..., ay, b;,..., by is chosen for the homology group
of one-cycles on %, a,,..., a, are uniquely determined, up to ordering and
orientation, by the condition that any closed loop of real points of 4 3 decompo-
ses in p,-coordinates into a sum of N loops which are homologous to an inte-
gral combination of a,. Canonical means that under the intersection pairing,
(a;, a;) = (b;, b)) =0, (a;, b;) = §;;. (See [Ercolani and Forest (1985)] for more
details.)

(i) vy,...,0y is the basis of the space of holomorphic differentials on
normalized, so that

f v, =38

a;

iz

(iii) A is the lattice of periods of ®. 1t is generated by integer sums of
(fa,i;’ f b,-?;)‘

(iv) ¢ is a biholomorphism between #) and Jac(2). It takes (£ — o0)™
onto Jac(#) — {¢}.

(v) The real angles 8, parameterize a translation of the real span of the q;
periods:

{(,...,8,/2m,...,0): mod 27 } = (Xo-i- span of R - fiz')/A,

a;

where KO is a constant translation. This translate, denoted by T, is a real N-torus
lying entirely in JacR — {0}. Under ¢~! this torus is isomorphic to the real
points of .# z [Ercolani and Forest (1985)].

VI.C. Translation invariant vector fields. Our goal in section VI is to find a
useful spectral representation of 3W,/360,; hence, we must study the vector fields
d/30,. Clearly, {dWy/d0,,..., dWy/98y} is a complex basis for the transla-
tion-invariant vector fields. We use the Abel map ¢ to pull these back to
(2 — {0})™), the spectral coordinates, i.e., we identify

]
*
(®)* h

We get at this in a somewhat roundabout fashion by constructing a family of
invariant vector fields parameterized by # — {0}.5

SFor those familiar with spectral theory in the periodic case, these vector fields are the analog of
the gradients

beos™ > (E)

cOs -

3 =
1 0 8u ’

where A is the Floquet discriminant.



MODULATION EQUATIONS OF A SINE-GORDON WAVETRAIN 967

R Jac(R)

FIGURE 2

Let V' be a nonvanishing holomorphic vector field on # — {00}. Consider the
restricted Abel map
P
[

o0

P
[ ow

o0

®(P+ (N —1)o0) =

The closure of the image of @ is a copy of # embedded in Jac(®) with
®(00) = 0 [Ercolani and Forest (1985)). ®, embeds the vector field V as a vector
field along ®(# — {0}) € Jac(&). See Figure 2.

Now Jac(®) = CN/A is a flat torus, so we can extend the vector ¢,V(p) at
®( p) to a translation invariant vector field on all of Jac(#). Let D,(V) denote
this extension in terms of the translation-invariant basis {3d/d6,}; we have the
formula [Mumford (1983)]

N 3
D,(V)=-2nY @), V(P)) 55
i=1]

where the v; are the basis of holomorphic differentials on # and where the
pairing (,) is the natural pairing between covectors and vectors. A point-
independent way of representing this construction is

N J )
D= -27) v,® —. (VL6)

From a differential geometric point of view, D is a (holomorphic) one-form on %

with values in the space of invariant vector fields on Jac( ).
The pullback of D by the full Abel map,

a
*D = — ) *
¢*D 27r§i:u,®¢ I

can also be computed.



968 ERCOLANI, FOREST, MCLAUGHLIN, AND MONTGOMERY

The result [Ercolani (1986), Mumford (1983)] is best given in a point-indepen-
dent manner by evaluating this derivation, which by abuse of notation we will
also call D, on the coordinate polynomials g, #, and f on 2. For our
calculations we only need the result for g/s:

D(g(E)) _ dp g(E)f(r) - /(E)g(n)
s(E) ] s(n) (E~-p)s(E) °

where (u, \/;T s(p)) is the point P on # and where E is the parameter of
the functions f, g, and h. A remark on interpreting this formula may be help-
ful. Fix E€X. Then f(E), g(E), h(E), and s(E) are functions of
(Gy,-.., Gy, Hy,..., Hy, Fy, ..., Fy), and hence functions on %#‘M. For exam-
ple, g(0)/s(0) is one such function. Now D has the form Luv, ® X', where the v,
are holomorphic differentials on # and the X’ are vector fields on 2. Hence

o[ 82)) x5

(VL7)

s(E) s(E)

should be a one-form on £, as is the right-hand side of (V1.7).

VI.D. A fundamental formula. We will now use (II1.6) and (I1I1.7) to derive a
formula which is fundamental for our final computation.
At E=0,

0 -G -1I o
g(0) _ N _ By —iu (VL8)

s©0) ~ JOE, JaE

where u = W)y, is an N-phase wave on . z. The final equality here is derived by
[Forest and McLaughlin (1983)]. Then

g(0)) | i
D(;@) =iDu-e ",
Also,
g(0) g(0)f(p) du
D(s(O)) = SO(-w)s(k) (by (VL)
_ e ()
~ Tas(n)
Therefore,
Du = —-iﬂﬂ . Eﬁ (VI-9)
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Taking a continuous superposition of D, along a ', we have

N
[ Du=-2q [ X uap, (by (V1.6))
a; Qjjml
= —27u,. (by normalization of v,)
On the other hand,
f(p) dp

Du= —i . —_. by (V1.9

fa, fa,.S(u) p (by (VL))

Therefore, we have a fundamental formula

Wy _ "ff’ﬁ. f(#) (V1.10)

36, 2alop 28 |
! H(#‘Ek)

which is the main result of section VI. Note that the denominator in (V1.10) may
be expressed as /u R(p).

VIL A spectral representation of the action (J). Armed with the fundamental
formula (VI1.10), we can now derive a spectral representation of (J). We begin
from (VI.1a) (u = W, below),

(i) = (upuq) = (& - Vyu, ug,),
and continue to compute:

(i) () = (& - Tu,up)

i g -
- 5[ RS Gwsw) Gy (vLI0)
Ly 3 (uo . .
B L' VER(n) (u,vf(p)) (integration by parts)

27

L S
2 L,ﬁk(p)< S(B))- (VIL1)
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(ii) In [Forest and McLaughlin (1983)], Formula (IL.4"), we find that

f,=iﬁ[(1 + f6”)g+ (1 + i;ﬂ)h].

Inserting this into (VIL.1), we have

1 du e’ du e’
(J,) = -2-‘—”- falm<(l + 1—6#-)gu> + Lm—)-<(l + 160 )hu> . (VHZ)

(iii) It follows from the reality of u that
( eiu)* = e~—iu
(( )* denotes complex conjugate) and

(h(p))* = g(u*).

(1 + e "™/16p)h(p)u is of the form (1/p)F(p), where F(p) is a polynomial in
. The coefficients of F are functions of {(pt;, R(g), ..., (ty, (R(px )} (F(p*))*
replaces the coefficients of F by their conjugates. Since these coefficients are just
symmetric polynomials in {u,,..., 5}, this conjugation amounts to replacing
{m;} by {u}}. However, if (p,,..., py) are coordinates of a point on T,
(n¥,...,p%) are coordinates of another point on T. This follows from the
structure of the reality constraints. Also, this conjugation preserves volumes on 7.
Thus, the average over all of T satisfies

1 1 1 1
< ;F(n)> = SCR) = (R - <;(F(u ) >

Hence,

<(1 + el;:)h(p.)u> - < 1+ f@ (h(p.*))*u>

=< 1+ 16,6':1 g(p.)u>.
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Therefore, (VIL.2) reduces to

(J) = %f%“l + —f;—:l)gu>. (VIL3)

(iv) We now rewrite the phase average in (VIL3) entirely in terms of the spectral
variables { u;}. This is done by multiphase averaging as described in [Forest and
McLaughlin (1983)):

<(1 + leé';)g(u)u>

=-/;1.“‘/¢’z~(1+ 116 V'P"l/n——' By E(I‘ mi)-
N l:[(l‘.
[(Zi(lnpj)—tln‘/l—'[__]lj dp,l...de
/=1 IUIR(P'I)
and
<(1 + :;;)gu> i

R(p)

16 1 im=]1

+ f--'faN(Hi—m——T;)l_[(u B

IT (k-
(f ’(Inﬂ,))'__KKJ ——dp, - duy —Ii%
TTR (k) g

The first term is established by section IIL.D of [Forest and McLaughlin (1983)].
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Since, [, 2 = 0, this term contributes nothing to (VIL3), and so

BRI /(ui ) -

a 16 p, -
111 (mi -
(Z (ln#,)) ¥ duo -+ dpy, (VIL4)
/=1 IIJ)R(I‘I)

where we have replaced p by p, the variable of integration for the outer integral

fa'

P

. TE,
<Jp>=—121’[p‘/a, ‘/‘;ln(ﬂ, (1+-1—6-m
H (I‘i - "’j)
0<l<_];N dpg - dpy. (VII.S)
E)R(F'l)

Formula (VIL.5) evinces the symmetry of the p, variable with the other u; (except
in In(p ).

\2) IIJI this part we will show that if j # p, the jth term in (VIL.5) vanishes. The
Jth term is

i 1 ﬁEi IT (e~ n.)
;f f . / ln(p,j)(l + 1—6- ) O<k<m;N dug -+ duy.
a ay

ya e TTR(k)
=0

By Fubini’s theorem one can interchange the Oth and the jth place in the order
of integration:

1 1 ILE,
th term = — . e [ In(p)|1 + — -
’ T '/;j'/;l j;j—lj;pf '/;N ( j)( 16 pg - - I‘N)
oeitd (= pm)
X mN dpjdp, - dp; ydp,dp;,, - dpy.
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The term in the brackets can be rewritten

VAT TS § A (TR T y 1
IT;R(p,) R(p;)’

{)=(1

where the prime in the product symbol [T means multiply over all indices not
equal to j. The sign (—1)/ comes out, since j is the number of indices k with
k < j. Thus

(— 1)

Jjth term =

J =)l Lggy R( » (VIL6a),

where

1 «Ex
[]1‘=/ /; fj;LN(1+i€ T,

l—Il’c< m(p‘k - F‘m)
nl,cR(y‘k)

XTT(p; = i) dpy - dpg -+ dpy. (VIL6D);

If p +# j, then the loop integral fa is repeated twice in [ ];. We apply Fubini to
the integral [ ], and interchange the pth and the jth (now occupied by pg)
variables of mtegratxon

[ O

E 1
[ f -LN(H ) ot

+0,0 [T12(1; = )T (is = B,)] dity -+ dpsg -+ dpy, (VILT);

where o, just permutes p, and g, in the product [T1;(p; — p 7 < (e = 1,))
This leaves IT;(n; — p,) unaffected since j # 0 or p (by assumption).
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I < ,.,(py — 1) is just the van der Monde determinant of

O A

O U R 1

LR e #3—1 “_Iiv—l

1 piy P'?+1 Tt F'}V+1
R TR

0,0 corresponds to the interchange of the Oth and the pth row. Hence, its effect
on the determinant is to change the sign. Therefore, (VIL.7); becomes

[ ]j= | ],-,

and so [ ]; = 0 and the jth term (VIL6), for p + j is zero. (Note that if p = j,
then o,, also changes the sign of I1;(n; — p,), and so the pth term needn’t
vanish.)

(vi) From the previous discussion and the expression (VIL.6a,b); with j = p,
we have

() = (—1)"—@_1-/“ In g, | 17;—2%—)

where
1 LE,
‘ ]ffa,'“fa,,(” En—ky::)

i cm(e = )
xnllc(p’p - y‘k) kn;‘R{ﬂk) d"'l e dﬂo te dﬂN

=0 (p,);
the last equality comes from §IIL.D of [Forest and McLaughlin (1983)]. Thus

o = (-l [ m(we ()

+1
=Jp. (-1)1’ ,

where J, is as defined by (VI.1b).
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Thus we have shown that, up to sign, the component (J,) and J, of the two
wave actions agree. This sign difference is unimportant, since both components
act as action variables. Moreover, the sign difference can be attributed to the
orientation of the a, cycles and hence of the angle §,. We summarize the results
of this section in a

PROPOSITION.  The two wave actions J, and (J,) are equal up to sign. Hence
the canonical structure of {Forest and McLaughlin (1979)] agrees with the structure
obtained in section V via pull-back.

VIIL. Conclusion

1. We have shown that the full sine-Gordon Hamiltonian structure, when
restricted to slowly modulating N-phase wavetrains and reduced by the action of
phase shifting, induces the Hamiltonian structure for the modulation equations.
In this reduced Hamiltonian system, the canonical variables are the local wave
numbers ¥(x) and the local actions J(x); the reduced Hamiltonian is a phase
average of the original Hamiltonian. Notice that the local action variables depend
upon time. This time dependence of J(x) arises because the Hamiltonian H
which governs the reduced system is not the (completely integrable) Hamiltonian
in the class of N-phase waves with fixed spatial wave numbers. Rather, it is an
average over such local Hamiltonians (see the appendix for more on this point of
view); the wave numbers K(x) and H depend upon the slow spatial variable x.
This change in spatial wave numbers induces the time dependence of the action
variables J(x).

5. The Hamiltonian form of the modulation equations for the sine-Gordon
system was presented in a compact and useful form in [Forest, McLaughlin
(1983)]:

. dH
= 0=
aJ
=0d,—, VIII.1
=0, (vIIL1)
where
1
K. = Q(X) J = _ Q(X).
= J; =15 )
This is a consequence of the more fundamental relation
Q=) - Q0 = 0. (VIIL.2)

Q™ and QO are meromorphic differentials on the Riemann surface # which
enter the theory through the spectral problem that integrates sine-Gordon.
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variables: (J,, 8,), i = 1,..., N. In these variables, (A.2) is completely integrable:
dHy
i %8, 7
. O0Hy
0, = =7 = (the ith temporal frequency). (A.3a,b)

In addition, the angles 6, satisfy

(6,), = x; (the ith spatial frequency). (A.3c)

A.2. Modulations of the parameters. The wave numbers k; and the actions J,
are constants which parameterize the exact N-phase solutions u,. We aim to
parameterize a solution u(x, t) of the full system (A.1) locally by uy. For this
approximation to remain uniformly valid over long distances, the parameters
(x;, J;) must vary on slow scales.

To describe this situation, we use the scaling parameter ¢ (0 < ¢ < 1), as it
appears in the sine-Gordon equation (I1.1), to define multiple scales:

X t
x,X=— and (,T= - (A1a)¢
€ e
H¥(u) = foo he(u(x)) dx (A.1b)°
SH )
e, =Ff° 5 (A.1c)

In addition to the slow phases 6, we introduce fast phases
0,=0,(x,1)/e, j=12,...,N.

In terms of these variables, the wave u is described locally by the N-phase wave
form evaluated on these phases:

0.(x,t 0u(x,t) .
u=uy :(8 )’.”, N(s );x(x,t),J(x’t))Eue,

Here, as in the body of the text, u® is the modulation ansatz. For sine-Gordon u*
is (u%, v°) as in the text. This N-phase waveform will be a local solution to
(A.1b)®, provided the phases 0(x t; X, T) are tied to the parameters («, T ) as
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AXx

b—t—t—t

Xi-172 Xj Xj41/2 X
FIGURE 3
follows:

d
591"‘1
F SHP
—0. = w, = . Ada,b
ar 7" Y 8J; (A4a,b)

This means that locally the wave is a highly oscillatory N-phase wave with wave
numbers and frequencies which change moderately over long distances. Because
of these modulations, we do not know the x,  dependence of the phases as yet.

To describe this situation, we construct a “subspace” .#° of the full phase
space # by pasting together local phase spaces .?N(E’(x)), each of which is
indexed by the long scale x. For this construction of .#° consider the x-axis
partitioned into blocks of width Ax (Figure 3).
_, In a block, the slow x dependence of the wave u on the parameters ¥(x, ¢) and
J(x, t) is essentially constant. Howe:ver, as one moves from block to block, these
parameters change. The subspace ¢ is the two-timing version of the space #*¢
in the body of the text. .

Thus, we construct a phase space .#° by pasting together the spaces of
N-phases waves %, for each block:

M= XL'L?N[E(x)].

We treat this “space of slowly varying N-phase waves” as a subspace of the full
phase space #. The coordinates of a slowly modulating wavetrain in #¢ are

J(x)—local actions
6 (x)—local phases,

one for each slow variable x, just as we found for .#° in the body of the text.
The phases satisfy
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The local wavetrain in the ith box depends upon the local wavetrain in
adjacent boxes. This coupling of the local wavetrains results mathematically from
the restriction of the full Hamiltonian to slowly varying N-phase waves in M
H: A — R. We compute this restriction next.

A.3. A reduced Hamiltonian. The idea now is to use the full Hamiltonian H®,
(A.1b)*, but restricted to the subspace £, to characterize the dynamics of the
slow modulations. Upon approximating this restriction, we obtain an approxi-
mate Hamiltonian:

Ao At - Ry Bfu] = [~ Hylut(-, %)) dx. (A .52)

We emphasize that the Hamiltonian density for the approximation Hamiltonian
Hi¢ is just the local N-phase Hamiltonian Hy? indexed by the slow scale x. Thus,
the approximate Hamiltonian H® is an “average over the slow scale x” of the
N-phase local Hamiltonian. In the remainder of this subsection A.3, we will carry
out the reduction of the full Hamiltonian H(® to this approximate Hamiltonian
H®.

To begin, we evaluate the full Hamiltonian H on a slowly modulating N-phase
wavetrain u°. Then we approximate the Hamiltonian by partitioning the x-axis
into blocks of length Ax; these blocks are moderate on the x scale, but long on
the x /e scale (Figure 3):

0
H(u)= L [ n|u (o(x)

i=—o00 Xi-1,2

+ o0 Xiv1,2 . u (5(x)
N

K(x), J(x))] dx (definition of H¢)

i

)>

i=—00 XiT1,2

s K(x;), f(x,))} dx

(freenng the slow dependence
of J, ¥ at the midpoint of

each block)
+ 00 :
= Y (h®)Ax, (defines the spatial average (h))
i=—o00
[o
= f (h) dx, (Riemann sum)
— 00

where the average (h*®) is defined by

<h > - —_fx,-+1/2hs[uN(_0(_:)_; '_"(xi)’ f(_x,))] dx

i “Xj-172
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and where
(hy = im (Y = Hy (g (-, R(5), T(x)),

which yields (A.5a):

oo

He(u) = [~ Hy(w'(,x)) dx

= H(¥,T), of§V.

This last equality is clear from the ergodicity of the translational flow when all
the «; are irrationally related. When some of the «; are rationally related, it
follows from continuity.

A.4. Modulational equations as a Hamiltonian system. In this section we show
that the modulation equations themselves are a Hamiltonian system with Ham-
iltonian H*:
8H*

o«
8H¢
&

=]

a = 6
Z =4 (A.6)

]

Here the phase point has coordinates (k, J ), and _# denotes the antisymmetric
differential operator

=0 1)

To deduce this Hamiltonian form of the modulation equations, we assume that
the reduced Hamiltonian H* generates the correct flow on #°¢ by

~

d_. &8¢
Ay

d._ SH®
edt = — 8@ .

We differentiate the first equation with respect to x, and use éx = K /& to replace
it by
d 8H*

d—’
" ax o
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Now consider the second equation. Notice that the approximate Hamiltonian H*
depends on © only through O, = k/¢; therefore,

SH: d 0H¢ d 8H:
56  9x 86,  ox ok

With these observations, the action-angle formulas lead to a Hamiltonian form of
the modulation equations:

4. __«'J_[aH;(uN(-,x))
) = 5T a0 ]
d d 3H§(“N(',x))
EJ(X)=5§[ 37 (x) ];

that is, to (A.6).

Note that this calculation of £ is precisely the calculation of the reduced
brackets done in §V.

We have again shown that the full Hamiltonian, when restricted to the slowly
modulating N-phase wavetrains, induces a Hamiltonian structure for the modula-
tion equations, and have arrived at exactly the same modulational Poisson
structure as in the text.
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