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Abstract. Suppose that the initial triangle formed by the three moving masses of the three-
body problem is similar to the triangle formed at some later time. We derive a simple integral
formula for the overall rotation relating the two triangles. The formula is based on the fact that
the space of similarity classes of triangles forms a two-sphere which we call the shape sphere.
The formula consists of a ‘dynamic’ and ‘geometric’ term. The geometric term is the integral
of a universal two-form on a‘reduced configuration space’. This space is a two-sphere bundle
over the shape sphere. The fibring spheres are instantaneous versions of the angular momentum
sphere appearing in rigid body motion. Our derivation of the formula is similar in spirit to our
earlier reconstruction formula for the rigid body motion.

AMS classification scheme numbers: 70F07, 58F05

1. Introduction and results

1.1. A reconstruction formula

The three-body problem concerns understanding the motions of three point masses travelling
in space according to Newton’s laws of mechanics. The three masses form a triangle in
space so that Newton’s equations define a dynamical system on the space of triangles. The
shape (congruence class) of the triangle is the primary variable. Shape variables are further
divided up into an overall scale parameter I , and the similarity class of the triangle. The
similarity classes form a two-sphere, denoted S, and called the shape sphere. We view the
orientation and position of the triangle in space as secondary variables. (The translational
part of the motion is eliminated by the usual trick of going to centre-of-mass coordinates.)
Our basic question is: given that the initial and final triangles of a three-body motion are
similar, what is the rotation, R, which relates the two triangles (up to scale)?

We will suppose that the planes defined by the initial and final triangles and the total
angular momentum vector, J0 are known. Write J0 = J0e3 where J0 is the magnitude of
the angular momentum and e3 is a unit vector. Let n0 and n1 be the normal vectors to the
initial and final planes. Let R0 be the (smallest) rotation in the e3–n0 plane which takes
n0 to e3 and R1 the analogous rotation in the e3 − n1 plane which takes e3 to n1. (If the
normal vector ni is coincident with e3 then its rotation Ri is the identity.) Since R takes n0
to n1 it can be written in the form

R = R1RJ0R0 (1)

† email: rmont@cats.ucsc.edu

0951-7715/96/051341+20$19.50 c� 1996 IOP Publishing Ltd and LMS Publishing Ltd 1341
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where RJ0 is a rotation about the J0 = e3 axis by some angle �θ . Our main result is the
following integral formula for this angle

�θ =
�

t1

0
ω(t)dt +

� �

D

�. (2)

We will take the remainder of this subsection to describe the integrands of this formula.
The formula itself is another example of a ‘reconstruction formula’ ([6, 5, 10]) and as such
is closely related to Berry phase formulas [16]. We will expand on this at the end of this
subsection.

The first integral,
�

ωdt is called a ‘dynamic phase’ in the Berry phase literature. The
integrand ω represents the instantaneous angular velocity of the moving triangle q(t) about
the axis J0. It is given by

ω(t) = e3 · I(q(t))
−1J0 (3)

which also equals J0e3 · I(q(t))
−1e3. Here, I(q) is the instantaneous moment of inertia

tensor of the weighted triangle q (see (7) below) and recall that J0 = J0e3. Physically
speaking, I(q(t))

−1J0 is the angular velocity which a weighted triangle would have, if its
angular momentum were J0, and if it were to be frozen at the shape q(t) which it had at
time t . The time t1 of integration is the duration of the motion.

The second integral is of the type called a ‘geometric phase’ in the Berry phase literature.
It is the integral of a two-form, �, over a disc, D, in a certain ‘reduced space’ which we
call Z. The two-form, �, is closed and is independent of the choice of potential defining the
three-body dynamics. It lives on a four-dimensional ‘reduced configuration space’, denoted
Z = Z(J0) which we will now describe. The configuration space for the three-body problem
in three-space, with centre of mass fixed, is a six-dimensional Euclidean space denoted by
Q. Its elements will be thought of as triangles, with vertices q1, q2, q3 having masses
m1, m2, m3 and with centre of mass at the origin. The group, G = SO(3) of rotations acts
on Q by isometries. The group R+ of dilations and the subgroup SO(2) ⊂ G of rotations
about the J0-axis also act on Q. It will be convenient, in fact essential, for us to enlarge Q

to form Q̃, the space of oriented triangles. An element of Q̃ is a triangle q ∈ Q, together
with a unit vector n which is orthogonal to the subspace spanned by the vertices of q. Let
0 denote the triple collision q1 = q2 = q3 = 0. Then Z is, by definition, the quotient space

Z = (Q̃ \ 0)/(SO(2) × R+
).

The shape space or sphere, discussed earlier, is the quotient
S = (Q̃ \ 0)/(G × R+

) = shape sphere.
The inclusion SO(2) ⊂ G = SO(3), naturally induces a projection π : Z → S with typical
fibre π

−1
(s) equal to G/SO(2), which is a two-sphere. Thus Z is a two-sphere bundle

over the two-sphere S. We urge the reader to look at the first figure which is a picture of
Z and various of its features. Theorem 1 below asserts that Z is the nontrivial two-sphere
bundle over the two-sphere, S. (There are exactly two S

2 bundles over S
2. One is the

trivial bundle. Z is the other one.)
The fibring spheres of Z are interpreted as instantaneous versions of the body angular

momentum sphere which occurs in the description of the motion of a free rigid body.
‘Instantaneous’ refers to the instantaneous shape of the triangle. A point (x, y, z) on a
fibring sphere can be thought of as the fixed total angular momentum vector J0 viewed
with respect to a coordinate system attached to the moving triangle. Let {U1,U2,U3} be
the moving orthonormal frame defining the moving coordinate axes. Then (x, y, z) =
(J0 · U1, J0 · U2, J0 · U3). We will always take the third vector in our frame to be the
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Figure 1. The reduced configuration space SJ0 with the projected curve of integration πoγ (t).
The space is locally the product of the shape sphere S and a momentum sphere S

2
(J0). The

collinear configurations (equator) and double collisions are indicated on S by a thick curve and
the dots on this curve

normal n to the triangle: U3 = n. A good choice of such a moving frame is the principal
axis frame. This is a right-handed orthonormal frame which diagonalizes the instantaneous
inertia tensor I of the triangle. (The normal vector n = U3 corresponds to the eigenvalue I

of the inertial tensor. For a typical configuration the eigenvalues of I are distinct, and there
are actually three such frames, differing from each other by signs.)

The two-form, �, is defined as follows. Begin with the natural mechanical connection A
([1, 6, 9]). The geometry behind this form is reviewed in subsection 1.3 and subsection 2.6.
It can be defined by the equation A = I−1J where the angular momentum, J, is thought of as
a one-form on configuration space with values in R3. A is defined everywhere except where
I is not invertible, which is precisely at the collinear configurations (see subsections 1.4 and
1.5). After pulling A back to Q̃ it is smooth everywhere. Now consider its component α

along the e3 axis, and form the exterior derivative dα. This yields a two-form on Q̃. Next,
observe that this two-form is is basic with respect to the action of R+ and SO(2), which
is to say, it is the pull-back of a two-form on the quotient space Z. This two-form on Z is
the two-form �.

To give a formula for the two-form � on Z we use standard spherical coordinates (φ, θ)

on spheres S
2
(R), as well as coordinates (z, θ) where
z = cos(φ)

is the normalized height of a point above the equatorial circle φ = π/2 so that Rz is the
usual height, and −1 � z � 1. These spherical coordinates, together with the above local
trivialization of Z into the product of two S

2s induces coordinates (z1, θ1, z2, θ2) on Z. We
will show that

� = −{ 12d(z1z2) ∧ dθ1 + dz2 ∧ dθ2}. (4)
The height coordinate z1 on the shape sphere is proportional to the area A of the triangle.

(See the appendix for a derivation.) Explicitly,

z1 = 4
�

m1m2m3

m1 + m2 + m3

A

I
.

Here
I = m1�q1�2 + m2�q2�2 + m3�q3�2 = �q�2
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is its polar moment of inertia, and also the square of the Euclidean norm on Q. And
A = 1

2n · (q2 − q1) × (q3 − q1) is the oriented area of the triangle.
The height coordinate on the fibring spheres is given by

z2 = 1
J0
J0 · n.

It is the component of the total angular momentum normal to the triangle.
The angular coordinates θ1, θ2 do not have such simple meanings, and are more arbitrary.

In particular, the coordinate θ2, and the local splitting of Z into the product of spheres
depends on the choice of local frame {Ui} (choice of gauge) for the moving triangle q(t).
The choice which yields our coordinate formula for � is the principal axis frame discussed
above.

A three-body motion without triple collision has natural projections to a curve in Z

and to a curve in S. Our assumption that the initial and final triangles are similar means
that either this path in S is closed, or that its endpoints are related by reflection about the
equator, E. The latter situation occurs when the rotation which takes one triangle to (a
homothety of) the other, takes the initial normal vector to the negative of the final normal
vector. For simplicity, we will suppose that we are in the first case, where the path in S

is closed. The path in Z need not be closed, but there is a canonical way to close it. This
is depicted in the first figure as the arcs on the fibring spheres labelled by R1 and R2. The
disc, D, over which we integrate the two-form, �, is any disc in Z bounding the resulting
closed curve. (Z is simply connected.)

To summarize, the data needed for our formula are

• the total angular momentum J0,
• the initial and final normals n0 and n1 to the triangle planes,
• the angular speed ω(t) of (3),
• the reduced curve in Z.

The last two pieces of data can be recovered from a curve in the space

QJ0 = (Q̃ \ 0)/SO(2) = reduced configuration space.

This space fibres over Z with fibre coordinatized by I and describing the overall size of
the triangle. This size is needed to define ω(t). Newton’s equations for fixed angular
momentum J0 can be written as a mixed first and second order differential equation on
this reduced configuration space [11, 13]. The space itself is closely related to the usual
symplectic reduced space. Our formula, then, provides a means of recapturing the original
dynamics on Q if the reduced dynamics is known.

1.2. The planar case

In the planar case our question is simpler and has been solved several times before [4, 1, 9, 3].
A single angle describes the rotation relating two similar planar triangles. This angle �θ

is described by the same formula as above, which simplifies as follows. The integrand, ω,
for the dynamic phase becomes 1

I (t)
J0. To obtain the planar two-form, simply set z2 = 1 in

the formula for � above. This constraint describes the embedding of the planar problem in
the spatial one: the triangle’s normal is aligned with the angular momentum vector. (And,
if it is so initially, it is for all time.) Now dz2 = 0 and the two-form integrand becomes
� = − 1

2dz1 ∧ dθ1 = + 1
2 sin(φ1)dφ1 ∧ dθ on the shape sphere, which is twice the area form

on the sphere S of radius 1/2. It is the unique spherically symmetric two-form on the sphere
whose total integral is 2π .
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1.3. The structure of the calculation and some history

Our derivation of the reconstruction formula is quite similar to our earlier derivation [10]
of a reconstruction formula for rigid body motion. We construct a closed loop γ and a
one-form α in the ‘regularized’ three-body configuration space Q̃ such that when we apply
Stoke’s theorem to the line integral

�
γ

α and evaluate various terms, we obtain our formula.
We construct the loop, γ , by concatenating the three-body motion q(t) defined by Newton’s
equations with several other arcs obtained by rotating or scaling. The one-form, α, was
described in subsection 1.1. It is the e3 component of the ‘natural mechanical connection’
A, pulled back to Q̃.

The connection A first appears in Guichardet [1]. It has been argued that it was
discovered by Smale, who had a formula for something like our one-form αJ0 [17]. The
connection form was later used by Iwai [4] and rediscovered by Shapere and Wilczek [16].
I used it in [9] in studying the falling cat problem. The decomposition of velocities which
A defines is known to modern celestial mechanists as ‘Saari’s decomposition’. See [14],
and also [15]. See also the survey of Reinsch and Littlejohn [13] for explicit descriptions
and formulae and some applications to quantum mechanics.

The calculation would be conceptually simpler if we could work directly on Q.
Unfortunately, the connection one-form becomes singular, and is undefined, at the collinear
configurations. A collinear configuration, also called an eclipse or syzygy is by definition a
three-body configuration in which the three masses lie on a single line. Hsiang’s device [3]
of introducing the space of Q̃ of oriented triangles allows us to get rid of this singularity.
It appears to be necessary to work on Q̃ to obtain our formula.

The essential fact that the space S of similarity classes of triangles is the two-sphere
is well-known to modern celestial mechanics. See for example Moeckel’s beautiful survey
[8].

1.4. Collinear configurations and Hsiang’s regularization

The configurations with extra rotational symmetry are precisely the collinear configurations
C ⊂ Q. At any noncollinear configuration q the rotation group, G acts freely, meaning
that gq = q implies g = 1. Thus Q → Q/G fails to be a principal bundle exactly at the
collinear configurations, and hence the connection form A, well-defined away from C, must
become singular at C. (The normalization condition, satisfied by any connection must fail
at points with nontrivial continuous symmetries.)

Hsiang’s desingularization β : Q̃ → Q allows us to extend the connection one-form
and hence its component α to the collinear configurations. More precisely, the form β∗A
extends smoothly to β−1(C) \ {0}, although A does not extend to C ⊂ Q. By abuse of
notation we will refer to the pull-backs β∗A, β∗α and β∗dα simply as A, α, and dα. As
stated in subsection 1.1, the form dα on Q̃ is the pull-back of the form � on Z which is the
form of our reconstruction formula (2). The desingularization Q̃ has the added advantage
of making various quotient spaces, such as Q̃/G, nonsingular smooth manifold without
boundary away from the triple collision point 0.

At first glance it may appear to the reader that any solution curve with a syzygy must
have angular momentum J = 0, and that consequently we can ignore syzygies (and thus the
desingularization) for the nonplanar problem. However, this is not the case. Physically, one
can see this in the lunar problem where eclipses are possible even when the moon–earth
orbital plane and sun–moon orbital plane do not coincide. Mathematically we can see this
possibility as follows. Suppose that a syzygy occurs at the configuration q0 = (q1, q2, q3).
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Then we may write: qi = sie where e is a fixed unit vector and the si are scalars with

�misi = 0. (5)

Now write q̇0 = (v1, v2, v3) for the velocities at syzygy. We have

�mivi = 0 (6)

since we are assuming that we are in a centre of mass frame. The angular momentum is

J = �miqi × vi = e× (�misivi ).

Most solutions (si), (vi ) to the above constraint equations will satisfy J �= 0.
It follows immediately from this formula for J that it is impossible for the axis e of a

collinear configuration to be equal to e3, the axis of the angular momentum vector J = J0.
The only singular points ofQ/SO(2) occur precisely at collinear configurations aligned with
e3 and we have just seen that these are not physically realizable. This suggests that it may
be possible to carry out all of our calculations directly on Q/SO(2), thus getting rid of the
device Q̃ of oriented triangles. Question: can our reconstruction formula and calculations
be reformulated solely in terms of Q/SO(2), without relying on oriented triangles? If the
answer is ‘yes’ the calculation and formula will have to be different, since the form α does
not extend to Q/SO(2), even after we have deleted these ‘aligned’ collinear configurations.

Although syzygies can occur in the three-body problem they are rare. The set C of all
collinear configurations has codimension 2 within the configuration space Q for the spatial
problem, and so we expect that ‘most’ solution curves will miss C. The projections of these
typical nonecliptic curves to the shape sphere S will lie entirely in one (open) hemisphere
defined by the equator E = π(C). Even when a syzygy does occur along a solution path,
if its projected path to S is closed then the number of syzygies must be even since it
must cross the equator E an even number of times. Consequently we expect such paths
to have codimension 4 within the space of all solutions. On the other hand, the collinear
configurations for the planar problem has codimension 1 and we expect that ‘most’ (an open
set’s worth) of solution curves admit syzygies.

The shape sphere S is the same for both the planar and spatial problem, thanks to
Hsiang’s desingularization. In both cases the projection E = π(C) of the syzygies forms the
equator of S, a set of codimension 1. The apparent discrepancy between the codimensions
of C and π(C) in the spatial case is a result of Hsiang’s desingularization: the fibre π

−1
(s)

has dimension 3 if s /∈ E (the fibre is a copy of the rotation group) and it has dimension 2
if s ∈ E (the fibre is a two-sphere).

1.5. Outline of the paper

In the next section we introduce some notation and constructions basic to our goals. Then
we present the basic theorems regarding the metric and topological structure of the quotients
S, Z and some intermediate quotients. We also describe more carefully the two-form �.
In subsection 3 we prove these theorems. The proofs are based on restricting to the planar
three-body problem in which case the Hopf fibration arises naturally. In the final section,
we prove our reconstruction formula in the manner outlined above. In appendix A we
derive the fact that the shape sphere S is a sphere of radius 1/2. In appendix B we provide
an alternative calculation of the basic two-form �, one which shows that the principal axis
frame is the gauge in which our formulae are valid.
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2. Constructions, notation and theorems

2.1. Basic notation

The three-body configuration space Q consists of the set of all triples of vectors q =
(q1, q2, q3), qa ∈ R3 whose centre of mass is at the origin: �maqa = 0. The positive
numbers ma are the particle masses. We prefer to view Q as the space of weighted triangles
in space. In any case it is is a six-dimensional Euclidean vector space with squared norm
I (q) := �q�2 := m1�q1�2 + m2�q2�2 + m3�q3�2, also called the polar moment of inertia.
The instantaneous kinetic energy T (not to be confused with the ‘T’ of tangent bundle!)
of a path q(t) is defined to be T := 1

2�q̇�2. where
q̇ = (q̇1, q̇2, q̇3)

denotes the time derivative of the path.
The instantaneous total energy of a motion is E = T + V, where V = −�i<j

mimj

�qi−qj � is
the usual Newtonian gravitational potential energy. The choice of potential actually plays
no role in our analysis. All of our results hold, with the same proofs, for any potential
which is rotationally invariant. Thus any potential which is a function of the interparticle
distances alone will work. A three-body motion is a solution q(t) to Newton’s equations:
ma

d
2

dt2
qa = −∇aV , a = 1, 2, 3. The total energy E and the total angular momentum

J = �maqa × q̇a are constant along any three-body motion.
The moment of inertial tensor I(q) of a weighted triangle q is the symmetric non-

negative 3× 3 matrix defined by

ω · I(q)ω = �ω × q�2 (7)

where ω × q = (ω × q1, ω × q2, ω × q3) denotes the infinitesimal rotation of the triangle
q with angular velocity ω. I encodes that part of the metric on Q in the direction of the
G-orbits. It satisfies the equivariance relations: I(λRq) = λ

2
RI(q)R

T where λ ∈ R+ is
a homothety, or dilation and R ∈ G = SO(3) is a rotation. (The inertia tensor can be
expressed by the formula I(q) = I (Id.) − M where M = �maqa ⊗ qa is the standard
inertia tensor, Id. is the identity matrix, and I = tr(M) is the polar moment of inertia.)

2.2. Oriented triangles

The idea in this section is due to Hsiang [3]. We will need to choose a normal vector n(t)
to the plane of our moving triangle q(t).

Definition 1. An oriented triangle is a pair q̃ = (q, n) with q ∈ Q and n ∈ R3 a unit vector
normal to the subspace of R3 spanned by the vertices q1, q2, q3 of the triangle q. (Since the
centre of mass is 0 these three position vectors are always linearly dependent.) The set of
oriented triangles will be denoted by Q̃.

If the vertices of our triangle q span a plane then it has two possible orientations
q̃ = (q, ±n) where ±n are either of the two normals to this plane. If the triangle lies in a
single line an orientation for it is any vector n on the unit circle in the plane orthogonal to
this line. Such triangles are called collinear configurations. If q = 0 is the triple collision
point then n is any point on the two-sphere.

Lemma 1. Q̃ is a smooth algebraic variety. Away from the triple collision, the natural
projection Q̃ → Q is a branched cover, branched over the collinear configurations. The
rotation group G = SO(3) acts freely on Q̃ away from the triple collision point.
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Proof. Q̃ is the algebraic subvariety of Q × S
2 defined by the two equations q1 · n = 0,

q2 · n = 0. The differential of these defining functions is full-rank everywhere. Apply the
implicit function theorem. The other statements are obvious.

It follows from this lemma that any smooth function or covariant tensor on Q can be lifted
to Q̃. Examples are V, I and the Riemannian metric. The lift will be denoted by the same
symbol as the original. The lifted metric fails to be positive definite along the branching
locus. The three-body equations themselves also lift to Q̃:

Lemma 2. Any three-body motion q(t) which does not consist entirely of collinear
configurations has a unique oriented lift q̃(t) ∈ Q̃ passing through a given initial
noncollinear oriented triangle.

The proof is obvious.

2.3. The reduced configuration space, the shape sphere, and other quotient spaces

Let

G(J0) = SO(2) ⊂ G

denote the one-parameter subgroup of rotations about the angular momentum axis J0. The
quotient space Q/G(J0) is singular, even away from the triple collision, due to the presence
of extra symmetry at collinear configurations. The introduction of the space Q̃ of oriented
triangles regularizes this quotient away from the triple collision.

Definition. The reduced configuration space is the quotient space

QJ0 = Q̃/G(J0),

with corresponding projection denoted by

πJ0 : Q̃ → QJ0 .

The reduced motion corresponding to the oriented three-body motion q̃(t) is the projection
πJ0(q̃(t)) of this curve to the reduced configuration space.
The reduced configuration space is essentially a cone over the space Z which plays a central
role in our reconstruction formula. In order to show this and in order to get a good picture
of both spaces, we will also need to understand various other quotient spaces. Set

Q̄ := Q̃/G = congruence classes of oriented triangles,

Q/G = congruence classes of triangles.

The action of λ ∈ R+ scales each triangle by the factor λ and scales distances on Q by
this same factor. The polar moment (squared norm) I is a G-invariant function which is
homogeneous of degree 2. Let

S
5 = {I = 1} ⊂ Q

denote the five-sphere in the Euclidean space Q and

S̃
5 ⊂ Q̃

be the corresponding preimage of this sphere under the branched cover Q̃ → Q. Also let

Q̃
∗ = Q̃ \ {0},
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and

Q
∗ = Q \ {0}.

(The 0 in Q̃ represents the two-sphere of oriented triple collisions.) Then we have natural
identifications:

Q
∗
/R+ ∼= S

5

and

Q̃
∗
/R+ ∼= S̃

5 ⊂ Q̃.

The space Q
∗
/(G × R+

) of similarity classes of triangles is naturally isomorphic to

S+ := S
5
/G ⊂ Q/G

and the space Q̃
∗
/(G × R+

) of similarity classes of oriented triangles is isomorphic to

S := S̃
5
/G ⊂ Q̃/G.

Define

Z = S̃
5
/G(J0) ⊂ QJ0 .

Corresponding to these spaces we have various projections, Q
∗ → S+, Q̃

∗ → S,
S̃
5 → Z, et cetera, denoted by π or πJ0 . Note that the fibres of

Z → S

are the two-spheres:

π
−1
J0 (pt.) = S

2
(J0) = G/G(J0).

Theorem 1. S is a two-sphere which we call the shape sphere. The projection S̃
5 → S

is the nontrivial principal SO(3) bundle over the two-sphere. The projection Z → S is
the associated nontrivial two-sphere bundle over the two-sphere. The reduced configuration
space, QJ0 , minus the triple collision, is diffeomorphic to Z×(0, ∞) where the second factor
is parameterized by I .

Explanation. If G is a connected Lie group, then the equivalence classes of principal G-
bundles over an n-sphere are parameterized by the homotopy group πn−1(G). In our case
this homotopy group is π1(SO(3)) which is the two-element group. The nontrivialG-bundle
over S

2 can be realized as follows. Identify the two-sphere with the complex projective
line CP

1. Let γ → CP
1 denote the canonical complex line-bundle and � = CP

1 × R the
trivial real line bundle. Form the rank 3 real vector bundle E = γ ⊕ �. This is an oriented
vector bundle with a natural fibre-inner product. Then the nontrivial bundle, our S̃

5, is the
bundle of oriented orthonormal frames for E. And the nontrivial sphere bundle, our Z, is
the unit sphere bundle of E.

2.4. Metric nature of the quotients

Q, being a Euclidean space, is a metric space. G acts on it by isometries, so that the quotient
space Q/G of congruence classes of weighted, centred triangles, inherits a metric. This
quotient metric—sometimes called the orbital distance metric—is defined by declaring that
the distance between two points in the quotient is the distance between the corresponding
orbits in the original space. The dilations R+ act on Q and commute with the G action so
they induce an action on the quotient as well.
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The cone over a Riemannian manifold (X, ds2), possibly with boundary, is the
topological space (X × [0, ∞))/(X × {0}) with associated Riemannian metric dλ2 + λ2ds2.
Here λ is the real parameter in [0, ∞). The quotient by ‘X × {0}’ means that we crush
(identify) X × {0} to a single point, called the ‘cone point’. The metric tensor and manifold
structure becomes singular there.

Theorem 2. The metric space Q/G of congruence classes of triangles is a cone over
the space S+ of similarity classes. The cone point corresponds to the triple collision. S+ is
isometric to the closed upper hemisphere of radius one-half. The equator represents collinear
configurations. The dilation parameter is

λ =
√

I .

Replacing Q by Q̃ resolves the singularity corresponding to the collinear configurations.
The pull-back to Q̃ of the metric on Q fails to be a metric over the collinear configurations:
it takes no energy to rotate a line segment about its axis. However, dividing by the G-action
kills these null directions so we again get a metric on the quotient Q̃/G.

Theorem 3. The metric space Q̃/G of congruence classes of oriented triangles is a cone
over the space S of similarity classes of oriented triangles. The cone point corresponds
to the triple collision. S is isometric to to the two-sphere of radius one-half. The equator
corresponds to the collinear configurations. The height coordinate above the equator is

1
2
z1 = 2

�
m1m2m3

m1 + m2 + m3

�

I
.

where � is the oriented area of the triangle:

� = 1
2
n · (q2 − q1) × (q3 − q1).

The map S → S+ of the sphere to the hemisphere which is induced by the branched cover
Q̃ → Q corresponds to the quotient map obtained when we identify the hemisphere with
the quotient space obtained by identifying points of the sphere related by the reflection about
this equator.

2.5. Relation with the symplectic reduced space

This section is included to connect the constructions of the previous two sections with the
symplectic reduced space construction. The results here are not used in arriving at our
formula, but may shed some light on it.

Consider the general situation of a compact Lie group G acting freely on a manifold Q,
and so also on T ∗Q. Recall that the symplectic reduced space at the point J0 ∈ Lie(G)∗ is
the sub-quotient space J−1(J0)/G(J0) where J : T ∗Q → Lie(G)∗ is the momentum map of
the action, J0 is a particular fixed element of Lie(G)∗, and G(J0) ⊂ G is its isotropy group
(relative to the dual of the adjoint action). This symplectic reduced space is diffeomorphic
to the fibre product: T ∗(Q/G)×f (Q/G(J0)) over the quotient Q/G. This follows directly
from [12], or [18], together with the fact that Q/G(J0) is naturally identified with the co-
adjoint orbit bundle Q×G (G/G(J0)) ⊂ Q×GLie(G)∗ over Q/G. ( See also the chapter in
[2] on minimal coupling.) In a case such as the three-body problem where the underlying
dynamics can be described by a second order equation on Q, the T ∗-part of a reduced
solution curve in the reduced space can be recovered from the derivative of the projection
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of that curve to Q/G. It follows that the entire reduced curve can be recovered from its
projection to Q/G(J0). Thus it makes sense to call Q/G(J0) the reduced configuration
space at J0.

2.6. The connection

Our quotients inherit various tensorial objects besides metrics. In order to describe them
we proceed generally. Suppose again that we are given a Riemannian manifold Q and a
group G of isometries of Q acting freely. From this data we can form:

• a metric on the quotient
• a connection for the principal G-bundle Q → Q/G

• a fibre inner-product on the adjoint bundle Q ×G Lie(G) → Q/G of Lie algebras over
the quotient.

The metric on the quotient (orbital distance metric) we have described.
To define the connection, we define its horizontal space.

Definition. The horizontal space at q ∈ Q is the orthogonal complement at q to the group
orbit through q. The associated connection form A : T Q → Lie(G) is called the natural
connection.

The metric on Q/G is a Riemannian one. Its metric tensor is obtained by identifying the
tangent space at π(q) with the horizontal space at q. With this definition, the projection
Q → Q/G has the structure of a Riemannian submersion.

To define the fibre inner-product on the adjoint bundle, let

σ (q) : Lie(G) → TqQ

denote the infinitesimal generator of the group action:

σ (q)(ω) = d
d�
exp(�ω)q|�=0.

Then set

�ω�2
q

= �σ (q)ω�2
Q
.

This defines the fibre inner product. Fix a bi-invariant inner product · on Lie(G). Using
the inner products we can construct the transpose

σ
T
(q) : TqQ → Lie(G).

The map (q, q̇) → σ
T
(q)(q̇) is the Noether conserved quantity, or, after we identify

Lie(G) and T Q with their duals using the inner products, it is the momentum map
J : T ∗

Q → Lie(G)
∗. The fibre-inner product can also be written

ω · I(q)ω = �ω�2
q
,

thus defining the moment of inertia tensor I. We have I(q) = σ
T
(q)σ (q). We now have

the universal formula for the connection form associated to this situation:

A(q) = I(q)
−1 ◦ σ

T
(q).

In our situation σ
T = J is the angular momentum, viewed as a one-form with values

in R3 (the Lie algebra of G = SO(3)):

J = �maqa × dqa.
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I is of course our moment of inertia tensor I. The connection form is then given by

A(q) = I(q)−1 ◦ J(q).

The horizontal space is the space of infinitesimal deformations with zero angular
momentum. This gives us a physical picture of what it means for a curve to be horizontal,
and of the length of a path in one of the quotient spaces S, Q/G, et cetera.

A has a nice physical interpretation. If q(t) is a three-body motion then A(q(t)(q̇) is the
‘best’ choice of assignment of an angular velocity ω to the motion, given the fact that this
motion need not be a rigid motion. If it does happen to be a rigid motion, with infinitesimal
angular velocity ω, then A(q(t)(q̇) = ω.

All of this falls apart at the collinear configurations. Rotation about the axis, e of such
a configuration q leaves the configuration fixed. It follows that the infinitesimal generator
σ (q)(e) = 0. Consequently the normalization condition, A(q)σ (q)(e) = e fails at the
collinear configurations. The connection, A cannot be extended to the set C of collinear
configurations. This is the main reasons for introducing Q̃. The action of the rotation
group on Q̃ is free away from the triple collision, and consequently the connection form,
A is well-defined everywhere on Q̃. More precisely, the pull-back by β : Q̃ → Q of the
mechanical connection, A extends smoothly to the ‘branching locus’ β−1(C). By slight
abuse of notation, we also refer to this form as A.

Definition. The form α is the component of A on Q̃ along the axis e3 of our fixed angular
momentum vector J0. That is:

α = e3 · A.

It is a one-form on on Q̃∗ = Q̃ \ 0.

Remark 1. The pull-back of α along an oriented three-body motion q̃(t) satisfies

q̃∗α = ω(t)dt

where ω(t) = ω(q(t)) is the instantaneous angular velocity of that motion about the J0-axis,
that is to say, the first integrand of our main formula (2).

Remark 2. Away from the triple collision, the natural projection πJ0 : Q̃ → QJ0 has
the structure of a principal circle bundle, the circle being G(J0). Its associated connection
one-form is α.

Theorem 4. The form dα pushes down to a two-form � on Z. This is the form � described
in the introduction and given by the explicit formula (4) above.

3. Planar configurations and proofs

3.1. The Hopf fibration in planar configurations

A planar configuration is a triangle lying in the plane perpindicular to the angular
momentum vector J0. If the triangle is oriented we will take its normal to be parallel
to J0: J0 · n = J0 > 0. The set Qplanar of planar configurations forms a four-dimensional
Euclidean subspace of the full configuration space. The action of the circle group G(J0) on
Qplanar is isomorphic to the action of the circle on C2 which takes (ζ1, ζ2) to (eiθ ζ1, e

iθ ζ2).
The intersection of the five-sphere {I = 1} with Qplanar forms a round three-sphere,

denoted either �̃ ⊂ Q̃ or � ⊂ Q. These three-spheres are diffeomorphic under β : Q̃ → Q
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due to the unique choice of orientation. Their quotients by G(J0) are isometric to the
two-sphere of radius 1

2 , which is the shape sphere S. Thus:

G(J0) → �̃ → �/G(J0) = S

and

G(J0) → � → �/G(J0) = S

are isometric as Riemannian submersions to the standard Hopf fibration:

S
1 → S

3
(1) → S

2� 1
2
�
.

3.2. Proof of theorems

Proof of theorem 1. Consider the two standard local sections of the Hopf fibration �̃ → S.
The transition function relating these sections takes values in G(J0) ⊂ G. The local sections
are also local sections for S̃

5 → S and as such have the same transition function. Restricted
to the equator the transition function represents the nontrivial generator of the fundamental
group of G = SO(3) and hence S̃

5 → S is the nontrivial bundle.
To prove the facts regarding Z observe that S̃

5
/G(J0) is isomorphic to the associated

bundle S̃
5 ×G (G/G(J0)).

Proofs of theorems 2 and 3. Any triangle can be made to lie in the xy plane by a
rotation so that Qplanar is a slice for the G action on Q. An oriented triangle can be made
planar in a unique way, up to rotation. An unoriented triangle can be made planar in two
rotationally inequivalent ways, the two ways being related by reflection. In other words:
Q/G = Qplanar/O(2), whereas Q̃/G = Qplanar/SO(2). This accounts for the difference in
the two quotients. These two identifications are isometries, since Qplanar is totally geodesic.
The last space is C

2
/S

1 which is isometric to the cone over the sphere S
2
(
1
2 ). The quotient

group O(2)/SO(2) is the two-element group and accounts for the branched cover S → S+.
The derivation of the formula for the normalized height z1 can be found in Hsiang [3] and
in our appendix.

The action by homotheties commutes with rotations so it descends to the quotient where
it remains a dilation: d(λa, λb) = λd(a, b). (Here a, b represent similarity classes and d

is the distance function.) Since I is homogeneous of degree 2, and since S
5 is defined by

I = 1, the dilation parameter λ equals
√

I .

Proof of theorem 4. It follows from the discussion of the previous section, the above proofs
and the fact that any curve of planar triangles has angular momentum in the ê3 direction,
that the restriction of A to � ⊂ Q is �ê3 where � is the canonical connection for the
Hopf fibration. One can choose a local section s: U ⊂ S → � for the Hopf fibration such
that s

∗
� = − 1

2z1dθ1. (The domain of this section is the sphere minus a ‘branch cut’ – a
geodesic arc connecting the north and south pole.) It follows that

s
∗A = −(

1
2z1dθ1)ê3. (8)

(An alternative proof is given in appendix B.)

Remark. The principal axis frame discussed above provides the correct choice of local
section. This is shown in Appendix B. Set !2 ∼= 0 ∼= θ2 in the calculations there to obtain
the above form of s

∗A.
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Now A is ‘basic’ with respect to the action of the group R+ of dilations. This means
that

σ
∗
λ
A = A (9)

∂

∂λ
�A = 0 (10)

where σλ : Q̃ → Q̃ is homothety by λ ∈ R+ and ∂

∂λ
� denotes inner product with the

infinitesimal generator ∂

∂λ
of homotheties. (To see (9) observe that I(λq) = λ

2I(q) and
σ

∗
λ
J = �maλqa ×d(λq1) = λ

2J, and use the definition A = I−1J. To see (10) observe that
the angular momentum of a pure dilational motion is 0 which means that ∂

∂λ
�A = 0.) Extend

the section s by making it constant under homothety. Then, by the homothety invariances
of A, formula (8) still holds for this extended section. Let U denote the local frame induced
by s. It is a map to G = SO(3) defined by writing q̃ = U(q̃)s(π(q̃)). The induced local
trivialization of our principal bundle Q̃

∗ → Q̃
∗
/G is then q̃ �→ (π(q̃),U(q̃)). Note that

U(q̃)3 = U(q̃)(e3) = n, is the normal vector of the oriented triangle q̃. Using this fact, the
transformation formula for connections, and the fact that under our identification of the Lie
algebra of G with R3 the adjoint action of G becomes its usual action on R3, we see that
with respect to our local trivialization we have:

A = −(
1
2z1dθ1)n+ (dU)U

−1

where (dU)U
−1 = � denotes the pull-back of the Maurer–Cartan form on G by the map

U .
We now have

α = −1
2
(z1dθ1)z2 + e3 · �,

since e3 · n = z2. It is well-known (see [10]) that the two-form d(e3 · �) pushes
down to S

2 = G/G(J0) and that this push-down is the area form −dz2 ∧ dθ2. Thus
dα = −{ 12d(z1z2) ∧ dθ1 + dz2 ∧ dθ2}, which is the claimed formula for �.

Remark. We think of the local frame U = (U1,U2,U3) as a moving frame attached to our
triangle, chosen so that U3 = n is the triangle’s normal. As discussed in the introduction,
and shown in Appendix B, the specific frame which leads to our choice of ‘gauge’, i.e.
s
∗A, is the principal axis guage. See also Hsiang [3], or Reinsch and Littlejohn [13]and
references therein. Note that the principal axis eigenframe is not well-defined at the north
and south poles since these points correspond to weighted triangles for which I has double
eigenvalues. (If the masses are all equal these are the equilateral triangles.) A branch cut
from the north to south pole is also necessary, for if we traverse a small loop encircling
the fibre over one of the poles then we wil find that the principal axis frame rotates by 180
degrees, not by 360 degrees.

4. Derivation of the reconstruction formula

In this section we derive our reconstruction formula, (2).

4.1. Closing the loop: a loop and a disc in Z

Let

s(t) = π(q̃(t)) ∈ S
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be the curve of similarity classes represented by our three-body motion. It is a closed curve
on the base two-sphere. Let

cJ0(t) = πJ0(q̃(t)) ∈ Z

denote the projection of q̃(t) to Z. Although s(t) is closed, the reduced curve cJ0(t) need
not be. There is a canonical way to close it. To see this, observe that Z → S has two
canonical sections. One consists of equivalence classes of triangles whose normals are
pointing along the J0 axis, and the other consists of those whose normals are antiparallel
to the J0 axis. We will call these sections, or their values at a particular similarity class,
the ‘north’ and ‘south’ poles. Since s(t) is closed, both endpoints of the curve cJ0(t) lie on
the same spherical fibre over s(0) = s(t1). On this fixed fibre draw the two geodesic arcs
from the north pole to cJ0(0) and from cJ0(t1) back, then sandwich the reduced curve cJ0(t)

in between. The resulting closed curve will be denoted γJ0 . It is the projection of a closed
curve γ (t) in Q̃. See the figure.

Finally, Z is simply connected so that γJ0 bounds some disc, D ⊂ Z.

4.2. The loop in Q

We now construct the loop γ in Q̃ over which we integrate. Its projection to Z is the loop
just described above. The loop γ is obtained by concatenating the dynamic curve q̃(t) with
several group orbits, denoted ci(t) or h(t). The act of concatenating two curves, one ending
where the other begins, is defined in the obvious manner, and will be denoted by ‘∗’ below.

To construct the group curves we will use the following exponential notation for
rotations. If v ∈ R3 then exp(v), will mean the counter-clockwise rotation about the axis
spanned by v by �v� radians. This is the standard Lie theoretic exponential map if we use
the standard identification of R3 with the Lie algebra of the rotation group. If v is a unit
vector, and θ ∈ R then exp(θv) is a rotation by θ radians about the v axis. Let n0 and n1
be the initial and final normal vectors to our curve of oriented triangles, as in assumption
(2), above. Form unit vectors

ξ0 = 1
�J0 × n0�

n0 × J0

and

ξ1 = 1
�n1 × J0�

J0 × n1

and corresponding one-parameter subgroups exp(sξ0), exp(sξ1) of rotations. Then:

R0 = exp(φ2(0)ξ0)

and

R1 = exp(φ2(t1)ξ1)

where R0, R1 are the rotation matrices of our reconstruction formula (1), φ2 is the angle
in our parameterization of Z, and φ2(t) is its value along the reduced curve γJ0(t):
J cos(φ2(t)) = J0 · n(t).

Let q̃(t) be the oriented three-body motion. Consider the concatenation

γ = c0 ∗ q̃ ∗ c1 ∗ cJ0 ∗ h
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of the following curves:

c0(t) = exp(−tξ0)R0q̃(0) 0 � t � φ2(0) q̃(t)0 � t � t1

c1(t) = exp(tξ1)q̃(t1) 0 � t � φ2(t1)

cJ0(t) = exp(−t
1
J0
J0)R1q̃(t1) 0 � t � �θ

and

h(t) = eat cJ (�θ).

The interval of definitions of the curves are chosen so that the endpoint of one curve is the
initial point of the next and so the concatenations are well-defined. The constant a and the
time of stopping for the final purely dilational curve h(t) are chosen so that its endpoint is
the beginnning point, R0q̃(0), for γ (t).

4.3. Line integrals

We have:
�

γ

α =
�

c1

α +
�

q̃

α +
�

c2

α +
�

cJ

α +
�

h

α

CLAIM:
�

c0

α = 0
�

c1

α = 0
�

q̃

α =
� t1

0
ω(t)dt

�

cJ0

α = −�θ

�

h

α = 0.

The first two integrals vanish because

c∗α = J0 · c∗A = J0 · ωds

whenever c(s) = exp(sω)c(0) is the orbit generated by a one-parameter subgroup of G.
(This follows immediately from one of the defining properties of connections.) Now use
the fact that the infinitesimal generators ω = ξ0, ξ1 for the curves c0, c1 are perpendicular
to J0. To evaluate the third integral, observe that cJ0 is also the orbit of a one-parameter
subgroup, but its generator is the unit vector along J0. The vanishing of the integral over
the homothety path h follows immediately from the homothety invariance of the connection
already discussed. The integrand for the dynamic path q̃(t) was already discussed. See
remark 1 near the end of subsection 2.6. where we noted that q∗α = ωdt .

An application of Stokes’ theorem and the formulae relating dα to � now prove our
reconstruction formula, (2).



The geometric phase of the three-body problem 1357

Appendix A. Identification of the shape sphere

Following the discusson of subsection 3.1 it suffices to understand the geometry of the
space of similarity classes of weighted triangles for the planar three-body problem. We
identify the plane in which the bodies move with the complex plane. Then we replace the
spatial configuration space Q above by the planar configuration space Qplanar of triples
q = (q1, q2, q3) of complex numbers, subject to the constraint �amaqa = 0. The space
of similarity classes of triangles in the plane forms a two-sphere, and a three-body motion
describes a curve w(t) on this sphere.

Let us describe the sphere S of similarity classes explicitly. First, we diagonalize the
mass matrix (kinetic energy) by introducting Jacobi coordinates

ξ1 = q1 − q3

and

ξ2 = −m1

m1 + m3
q1 + q2 + −m3

m1 + m3
q3,

and normalized Jacobi coordinates

ζ1 = √
µ1ξ1,

and

ζ1 = √
µ2ξ2,

where the reduced masses µi are defined by 1
µ1

= 1
m1

+ 1
m3
and 1

µ2
= 1

m1+m3
+ 1

m2
. Then

�ma�q̇a�2 = �ζ̇1�2 + �ζ̇2�2.
Rotations by an angle θ induce the transformation (ζ1, ζ2) �→ (eiθ ζ1, eiθ ζ1) It follows that
the vector

w = (w1, w2, w3)

defined by

w1 = 1
2
(�ζ1�2 − �ζ2�2),

and

w2 + iw3 = ζ1ζ̄2

is invariant under rotations. We calculate that the height coordinate w3 is

w3 = 2
�

m1m2m3

m1 + m2 + m3
A

where A is the (oriented) area of the triangle q. In other words,the height on S represents
the triangle’s area, A.

The sphere of radius 1
2

S = {w : w2
1 + w2

2 + w2
3 = 1

4 } = {w : I = 1}
and is naturally identified with the space of similarity classes of planar triangles. Functions
on S can be thought of as functions in the wi which are homogeneous of degree 0 with
respect to dilations. As such the height w3 on S is the coordinate 2

I

�
m1m2m3

m1+m2+m3
A. The

normalized height used in the body of the text is related to this coordinate by w3 = 1
2z1, so

that z1 = 4
I

�
m1m2m3

m1+m2+m3
.
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The wi can also be easily written for oriented triangles in space. Using the same
formulae for the Jacobi vectors ζ1, ζ1. Then w1 is given by the same formula as before.

w2 = ζ1 · ζ2

and

w3 = n · (ζ1 × ζ2).

Appendix B. Principal axis calculations

Here we directly calculate the connection form A and its third component α, using the
eigenframes for the inertia tensor. This gives an alternative proof of the formula (4) form
�.

Let u, v be normalized Jacobi vectors, so that I = �u�2+�v�2. The angular momentum
is given by

J = u× du+ v× dv.

Let {f1, f2, f3} be a right-handed basis of eigenvectors for the inertia tensor I, with f3 chosen
to be the normal vector to the plane defined by the three bodies. Then

If1 = I (sin(!/2))2f1

If2 = I (cos(!/2))2f2

If3 = If3.

for some angle !. For clarity, we will write these first two eigenvalues also as λ1, λ2; thus

λ1 = I (sin(!/2))2 , λ2 = I (cos(!/2))2.

Since f3 is the normal vector, we have

u = Af1 + Bf2

v = Cf1 + Df2.

Now �u�2 + �v�2 = I = A2 + B2 + C2 + D2. Setting

A = Rcos(θ/2)cos(!/2) , B = −Rsin(θ/2)sin(!/2)

C = Rsin(θ/2)cos(!/2) , D = Rcos(θ/2)sin(!/2)

where R2 = I guarantees that f1, f2 are indeed eigenvectors for the moment of inertia tensor
I = I(u, v). Also one checks that the eigenvalues λ1, λ2 of I are indeed as given. A direct
calculation using the Hopf coordinates (see e.g. appendix A) shows that θ,! are spherical
coordinates on the shape sphere, with z1 = sin(!). When the frame fi is taken to be the
coordinate basis, the configuration u, v is planar, and the choices made define a local section
of Q̃ → Q̃/G, the ‘principal axis gauge’. This is the choice of gauge (local section) used
for the formulae in the text.

We now expand the eigenframe in terms of an inertia-fixed frame e = {e1, e2, e3}. It
will suffice to assume that the normal vector n = f3 lies in the 1–3 plane. Thus:

f1 = cos(θ2)sin(!2)e1 − sin(θ2)e2 + cos(θ2)cos(!2)e3
f2 = sin(θ2)sin(!2)e1 + cos(θ2)e2 + sin(θ2)cos(!2)e3
f3 = −cos(!2)e1 + sin(!2)e3
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and we express

e3 = αf1 + βf2 + γ f3.
with

α = cos(θ2)cos(!2) β = sin(θ2)cos(!2) γ = sin(!2).

Warning: the angle !2 is not the angle φ2 of the text. It is chosen so that z2 = sin(!2).
Differentiating the eigenframe we find:

� df1
df1
df3

�
= �

� f1
f1
f3

�

where � is the skew-symmetric matrix of one-forms:

� =
� 0 �3 −�2

−�3 0 �1
�2 −�1 0

�

with entries

�1 = −sin(θ2)d!2 �2 = +cos(θ2)d!2 �3 = −dθ2.
For the rest of the calculation we will suppose that R = I = 1. Homothety-invariance

will yield the general formula for our forms from the formulas with this restriction.
With R = 1 we have

du = dAf1 + dBf2 + A(�3f2 − �2f3) + B(−�3f1 − �1f3).
Then:

u× du = (−A�2 + B�1)(Bf1 − Af2) + {A(dB + A�3) − B(dA − B�3)}f3.
Similarly:

v× dv = (−C�2 +D�1)(Df1 −Cf2)+{C(dD +C�3)−D(dC −D�3)}f3.
We can now directly calculate the connection-form A = I−1J.

I−1J = 1
λ1

{(−A�2 + B�1)B + (−C�2 + D�1)D}f1

+ 1
λ2

{(−A�2 + B�1)(−A) + (−C�2 + D�1)(−C)}f2

+ 1
1
{A(dB + A�3) − B(dA − B�3) + C(dD + C�3) − D(dC − D�3)}f3.

After some algebra we find:

A = −(sin(θ2)d!2)f1 + (cos(θ2)d!2)f2 − ( 12z1dθ1 + dθ2)f3.

Then α = −γ ( 12z1dθ1 + dθ2) = −( 12z2z1dθ1 + z2dθ2), and as desired � = dα is given by
the claimed formula (4) of the text.
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