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Foreword

Momentum maps are one of the cornerstones of geometric mechanics. In
these lectures, we present three related situations in which they are instru-
mental, summarized in Part 1 (an overview). In Part 2, we study adiabatic
phases for integrable mechanical systems in a (slowly) moving frame. The
momentum map of the group is averaged over the invariant tori. The sim-
plest examples are Foucault’s pendulum or any system with S! symmetry.
A nontrivial example is the rotating elliptic billiard. In Part 3, we give
an example of nonadiabatic phases, extending work by Montgomery and
Levi on Euler’s rigid body motion. We find the geometric phase around
the angular momentum vector of a gyrostat. Here the momentum acts
as a “pillar” around which the geometric phases are depicted. In Part 4,
we make the restriction of zero momentum. Typically, the configuration
space is a principal bundle with a connection; the base is called the “shape
space.” A robot (or an organism) can control its shape and by so doing can
navigate in the configuration space. After one cycle of shape deformations,
the new position differs from the original by an element of the Lie group.
We assume the reader has had an undergraduate-level analytic mechanics
class and knows the basic facts about symplectic forms, canonical trans-
formations, and momentum maps of groups acting symplectically. Part 4
requires knowledge of principal bundles and connections (actually, it can
be used to motivate that theory).
Our work, a companion to sections 2 and 3 of Mark Levi’s lectures (Chap-
ter 7 of this volume), is based on a set of four lectures given in January
1999 at the Mathematics Department, Universidade Federal de Pernam-
buco, Brazil. I would like to thank Hildeberto Cabral for his friendship and
support for almost 35 years!
Misrepresentations are the coordinator’s responsibility. To excuse ourselves,
we quote Mark Twain: “Adults don’t really lie, they just exagerate” (Tom
Sawyer) and Oscar Wilde “It is a terrible thing for a man to find out
suddenly that all his life he has been speaking nothing but the truth.”
(The importance of being Earnest.)

Earnest W. Coli is an intelligent Escherichia coli which is the maskot for
our collective work. See the site: http://web.bham.ac.uk/bcmdght6/res.html,
the E. Coli homepage.
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The collaboration of the participants is as follows:
o Part 2: Classical Adiabatic Angles o
With Richard Montgomery, Mathematics Department, University of

California, Santa Cruz 95064, USA.

o Part 3: Holonomy for Gyrostats .
With Maria de Fatima L. B. de Paiva Almeida, PUC-RJ, and Teresinha

J. Stuchi, Instituto de Fisica da UFRJ, Brazil.

e Part 4: Microswimming
With Kurt M. Ehlers, Truckee Meadows Community College, Reno,
Nevada 89512, USA, and Joaquin Delgado Fernandez, UNAM-Iztapalapa,

Mexico.
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Part 1: Overview

1 Adiabatic Phases: Overview

Berry [4] and Hannay [10] showed, around 1985, that geometrical and topo-
logical effects are ubiquitous in classical and quantum mechanical systems
subject to adiabatic variations of parameters. Since then, the theme “geo-
metric phases in physics” has exploded?.

Our examples in Part 2 will fit in the following framework?. Consider
a configuration space S of dimension n and a natural mechanical system
on T'S with Lagrangian L = T —~ V. § (the “laboratory”) is immersed on
a bigger Riemannian manifold W (the “universe”) of dimension N. W
is acted upon by a Lie group G so that every map iy : S — g- S is an
isometry. Using the metric, we have the identifications TS = T*S, TW =
T*W, and the embedding T'S — TW yields the corresponding symplectic
embedding T*S — T*W (not to be confused with the projection T*W —
T*S corresponding to the dual of T'S — TW).

Given a curve t — g(t) € G,

£@.0.9=T(560d) - V@, Qes, (1)

is a moving Lagrangian system inside W. As is well known, Euler-Lagrange
equations for the generalized coordinates @ contain “fictitious” forces, such
as Coriolis and centripetal ([2, chapter 4]). It is more convenient for our
purposes to work directly in the underlying inertial frame W. We set

9(Q,1) = 9(t)Q 2)

so the Lagrangian (1) becomes?®

L(g,4:t) =T(¢) ~ V(g(t)" - 9). 3)

The Lie group G can be thought of as a parameter space.

1For a comprehensive introduction, see {24].

2See [12] for a souped up version of the theory.

30ne of the nicest features of the formalism of calculus of variations is the invariance of
Euler-Lagrange equations [2, section 12D). Lagrangian (3), in which the time-dependence
is transferred to the potential energy, is mathematically equivalent to Lagrangian (1)
through the coordinate change (2). Notice that (3) can also represent a physically
distinct problem.
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The potential V contains three types of terms:
V=V.+ Vint + Vext-

V.. are infinitely constraining potentials (see, e.g., (23] or [13]) to S.
This means that g(t)~1q € S throughout the motion. Terms in V that are
completely equivariant under G, Vint(97! - q) = Vint(q) form the internal or
interaction potential. The remaining terms define the external potential.

Given a slow variation g = g(et), g(0) = I describing a closed curve
C C G, we want to compare the moving system (1) with a system evolving
in the inertial frame (g =1).

As a basic example, we consider a spherical pendulum orbiting a planet?.
To simplify matters, we assume that our spaceship is the spherical pendu-
lum itself. Taking the origin at the planet, the center of the sphere describes
a curve r(t) € W = R3. In the inertial frame W we have

Hpg,9) = 3P — o +ulla =@ =17 p—oor (@)
where k is the planet’s attraction constant and units are such that the length
of the rod and the mass of the particle are 1. The usual Foucault pendulum
corresponds to r(t), describing a parallel (constant latitude circle) of the

planet. See Figure 1.

spaceship

solid angle
; i pendulum

Figure 1. The “Star Wars” Foucault pendulum. Holonomy is given by a
solid angle.

4This is a “Star Wars” Foucault pendulum.
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We do not need to linearize gravity, nor to require that the pendulum
is in the small oscillation regime. We just use the S! symmetry around the
axis

r(t)

= rOr

We consider any moving frame R(t) € SO(3) whose third axis is z(t) =
r(t)/Ir(t)| € S*. Here the change of coordinates (2) is

79=r+R(@)Q, r=|r|-z, R@z)es =z =r/r]. (5)

Given any integrable system with §! symmetry around e3, we use the
angle 6 around this axis as one of the generalized coordinates®. We do not
care about the remaining generalized coordinates, because there will be no
effect on them to first order on €. Let the system evolve in an inertial frame
(r{t) = 7,); the function

6 = Oayn(t) (6)

is called the dynamic phase.

Now, let the spaceship go, as it actually does; notice that r = r(et) is
slow compared to the frequencies of the system. We will show that when
the spaceship makes a complete cycle, coordinate § will have acquired an
extra geometric phase (of order 1 = €%) given by

Abgeometric = solid angle subtended by r(t). )

Note that the parameter space G = SE(3) reduces here to X = R3 —
0 = S% x R*. The curve 7(t) of the pendulum pivot can be retracted to its
S? projection z, and the geometric phase is precisely the spherical angle.
See Figure 1 again.

The dynamic phase is of order ¢!, so the geometric phase usually
can only be extracted © by interference with a twin system evolving in the
inertial frame.

5 . . - .

' Caveat: This d.oes not necessarily imply that § must be one of the uniformizing
(i.e., part of an action-angle coordinate system) coordinates. In fact, for the spherical
pex;dulum 8 is not an angle coordinate.

. In Foucault’s pendulum, which swings vertically, the dynamic phase vanishes iden-
tically, so the geometric phase effect can be seen directly!

3
1
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2 Nonadiabatic Phases of Gyrostats

Recall Euler’s rigid body motion with a fixed point. With the help of Lie
groups, one can describe the motion as follows. The configuration space
is the group SO(3) of orthogonal matrices. Rigid body motions R = R(?)
are geodesics of a left-invariant Riemannian metric on SO(3), since the

Lagrangian consists of kinetic energy alone”.
Due to Noether’s theorem, it follows that the angular momentum (writ-
ten on the inertial frame coordinates) is a conserved vector,

m(t) = m. (8)

Euler’s reduced equations® describe the motion M(t) of the angular mo-

Maomentum sphere. 1M1 =]

Figure 2. Euler’s reduced system for the phase curves M(t).

mentum m as viewed from the rotating body. Following Arnold’s notation
[2], every capital vector means an object written in the body frame:

R(t)M(t) = m.

7 Left-invariance is the mathematical wording of the fact that physical behavior does
not depend on the choice of coordinate axis «,y, z for the inertial frame.

8 Reduction goes back to Jacobi’s “elimination of a node” and was cast in modern
language by Marsden and Weinstein [17]. If the reduced system is integrable, the problem
of finding the time-dependence of the “ignorable” coordinates was often dismissed on
the argument that it can be done easily by quadratures. But the reconstruction is not
always easy. A bit of geometry can be of great help, especially when the symmetry
group is nonabelian. For a general theory for reconstruction of the complete solutions of

Hamiltonian systems with group symmetry, see [18].
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Differentiating, after some simple manipulations, one gets
dM
E—:MXVMH(M) (9)
with H(M) = 3(M,A~*M). The inertia matrix A is symmetric and

positive definite. The reduced phase portrait on the sphere M|l = J is
sketched in Figure 2.

momentum vector m

\

inertia ellipsoid

invariable

plare\

geometric phase

Figure 3. Poinsot’s description of the rigid body motion. The geometric
phase is Ag.

Reconstruction can be geometrically visualized in Poinsot’s description:
the inertia ellipsoid (carrying the body frame R(t) : XY Z ) rolls without
slipping over the invariable plane [2]. Figure 3 depicts a polhode in the
ellipsoid and the corresponding herpolhode.

Recall that R € SO(3) is parametrized by the three Euler angles (see
Figure 4)

@ = Z(z,nodes), 9 = Z(nodes, X), o0 = £(Z,z). (10)

What is the geometric phase A¢ around m?
Using a bit of symplectic abstract nonsense, Montgomery {19] found
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X

Figure 4. Euler angles. m along the z-axis. Holonomy is measured using

6.

the following formula®:

Ap="5-T. (11)

Here h is the energy of the trajectory, J is the modulus of the angular
momentum vector, T is the period of the polhode, and T is the (signed)
solid angle, swept by the polhode. This solid angle is also the (normalized,
signed) area enclosed by the curve M(¢) in Euler’s phase portrait!

Thus, we do not need elliptic functions to get the most important
information about the full rigid body motion. The herpolhode angular
shift is given directly in terms of the reduced Euler system (the polhode
spherical angle).

More generally, take any system with symmetry and consider a periodic
solution of the reduced system. Reconstructing the full solution, some
variables usually acquire holonomies. In many cases, differential geometric
insight allows one to split a phase into two parts, one of which is called
“dynamic phase,” as is the first term on the right-hand side of (11), while
the other is called “geometric phase,” as is the solid angle in (11).

Here we will extend (11) to gyrostats, mechanical systems that are
composed of more than one body yet have the rigid body property that its
inertia components are time independent constants [25, 16]. Such systems
consist of a main rigid body, called the carrier, together with one or more

9Also obtained by M. Levi using differential geometry (see Levi’s chapter 7 in this
book).
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rigid symmetric rotors, which we may call flywheels, supported by rigid
bearings on the carrier. See Figure 5. Gyrostats have important technolog-
ical applications, particularly in the attitude control of artificial satellites
[15, 11]. Rotations of the n flywheels relative to the carrier do not change

Nt s o g o

canmer

Figure 5. A gyrostat with one rotor or flywheel.

the mass geometry of the whole system. For a gyrostat with n flywheels,
the configuration space is SO(3) x S x - .- x S1. We denote the additional
degrees of freedom 6y, ...,6,. In addition to left (or spatial) SO(3) invari-
ance, there is also right (or material) S!x ... x St symmetry. In this case
Noether’s theorem implies the existence of n additional conserved scalar
momenta I, ..., I, besides the conserved vector m.

The reduced equations of motion also give rise to trajectories on the
sphere |[M|| = J. They are given by

dé

Ld‘ﬂ‘t_’f =MxVyHM,I), Z=vHM,I). (12)

The reduced Hamiltonian H(M, I) is given by a quadratic function of
3-+n variables My, M, Mj, I,...,I,. In the first set of equations, the con-
served momenta I,. .., I, are thought of as parameters. We have shortened
the notations, 8 = (6;,.. -y0n) and I = (Iy,. .. , In) for the fiywheel coor-
dinates and momenta. Once a closed trajectory C' : M = M(t) is found,

say with period T, the phases associated to the flywheels can be found by
quadratures:

T
A, = / Vi, H(M(t), I)dt. (13)
0
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What about the geometric phase A¢ of the main body? Using Mont-
gomery’s approach, we prove
1 :
A¢=—2—’}—T——T—-—ZIJ-A0J-. (14)

Jj___1

We obtained the same result following Levi’s method; see [1].

3 Holonomy with Zero Momentum

: 10
In this section we present the abstract framework in a nutshell’”. The
reader not acquainted with connections on principal bundles should read

Part 4 first.

Figure 6. A cat performing holonomy (adapted from {9]).

The configuration space Q for self-locomotion problems!! is a principal
bundle 7 : Q — S over a base manifold S, with group G. That is,' G acts'on
Q@ and S = Q/G is the space of “shapes.” @ has a G-invariant RlerrllamTlan
metric, inherited by S. Denote V, = T,n~!(s) the vertical distribution.

The statement .
H =V (withrespect tothe metric) (15)

defines a mechanical connection.

We assume that this connection is fat (has lots of curvature). By the
Ambrose and Singer theorem [7, p.389], there are admissible paths between
any two points g,, g1 € Q. Take them in the same fiber, g1 = g - ¢o.

105ee [20] for details. .
11Exar[n;:o]les include the connections for falling cats or gymnasts, deforml'ng m%lecules,
satellites with moving panels, swimming in a tar pool, and many more (Figure 6).
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' For low Reynolds number swimming, Q, the set of “located shapes,”
is the set of embeddings of a given manifold (say, the sphere) on R3. S tl;

set of “unlocated shapes,” is the quotient of Q by the group G = S,E(3()e
o'f euclidean motions. An infinitesimal deformation of a given shape in Q
gives a vector field along the shape, and the set of infinitesimal deformations

d ﬁn g Q 4 we W W e connection can
€ €S “le tangent bllll(ue 1 . II] I art ShO hO th

?f a group G acts on a manifold @ and (,} is a G-invariant Riemannian
metric, recall that the momentum map y : TQ — G* is given by

N e dexp(té
bvg)- €= ), &= 22 o ceg v emQ, (0
where we have identified TQ = T*Q via the metric.

There is an intrinsic formulation for the connection form. Define the
locked inertia tensor, I: G — G*, by

I(€) - n = (£g:M4q)- (17)

The connection form is

Avg) = Ic;—l(/‘(”q))- (18)

The horizontal distribution is the kernel of the momentum map?? p
For a cycle s(t) of infinitesimal deformations of a shape s spanned by
vectors euy, eug, —euy, —euzx € Ty, the holonomy is given by

g ~ exp(*Qu1,u3))

where Q is the curvature of the connection.

Problem. With prescribed holonomy ¢ € G, find the shortest loop s(¢) in
S such that its horizontal lift connects g, to ¢ = gg,. The elements § € TS
are viewed as controls.
This variational problem with constraints is a special sub-Riemannian ge-
ometry pro.blem. Montgomery [20] studied the beautiful structure of the
corresponding Euler-Lagrange equations, given by

dsj _ . dp_ 10" dé;

—p; __199" Ik ;
3 — P & 2 33, pipk + Fjpp™ér, E=—Cﬁ1‘1{?’§k, (19)

121 3

n the case of microswimmin nism ca Tt
) g, zero momentum means tha i

neither net force nor torque on the fluid. t the organs e
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where AJ and F, J-Ik are, respectively, the coefficients of the connection and
the curvature forms. Here j runs over the dimension of S and I over the

~ dimension of the group. The intrinsic formulation of these equations, known

in the Yang-Mills theories as ‘Wong’s equations, are

(Vsire) = - F(bihe), 2 =0, (20)

where (%), the Lagrange multiplier, belongs to Ad*Q = Q xaa- G*, an
associated fiber bundle over S with fiber G*. Here h denotes the horizon-
tal lift via the connection. There is an Ad-ambiguity in the value of F,
choosing different elements g € Q over the vertical fiber over s € S. This
ambiguity is cancelled with the corresponding Ad*-ambiguity of A. The
optimal trajectories in the total space Q are obtained from the projections
s(t) € S by horizontal lift.

Not developed further in these notes due to space limitations, we briefly
discuss nonholonomic systems, a theme regarded until a few years ago as
only curious or bizarre, but that has recently become of great interest in
robotics!3. One example is certains stones, known to the Celts and sup-
posedly possessing magical properties, that prefer to rotate in one direction
(experiment performed in class). This and other examples show that the
momentum map is often not conserved in nonholonomic systems!

For nonholonomic mechanical systems such as those encountered in
engineering applications, using d’Alembert’s principle is believed to be the
correct way to eliminate the constraints (Sommerfeld [22])**.

In the case of nonholonomic systems with symmetry, eliminating the
constraints leads to an interesting reduced system (for details, we refer to
our work [14]). In the simplest situation, the same ingredients are used: a
principal bundle Q over a base manifold S, with group G, a G-invariant
Riemannian metric (or more generally, a G-equivariant Lagrangian L on
Q), and finally a connection, whose horizontal spaces define the constraints.
Here, however, the horizontal spaces do not need to be orthogonal to the

13Notwithstanding a somewhat dubious reputation, nonholonomic systems attracted
the interest of important scientists in the past. Hertz advocated replacing forces by
constraints and Cartan made an interesting address at the 1928 IMU Congress [6]. See
[8] for the state of the art of nonholonomic systems.

1475 Hertz already knew, a different set of equations results if one uses the rules of
calculus of variations (as in (20)). But their solutions do not fit the results of experiments.
Paraphrasing Leibniz, the engineer’s world is not the best (nor the worst), so it is not
described by variational principles.
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vertical spaces.

Using the horizontal distribution, the equivariant Lagrangian L on TQ
projects to a Lagrangian L* on T'S, but with an extra “strange” force!

We denote (following Arnold [3]) by {L*](vs) € TS the Euler-Lagrange
derivative'®. The reduced equations of motion on 7*S are written as (see
[14)

(L7)(vs)(®) = u(FLhg(vs)) - Qhq(vs), he(e)). (21)

Here ¢ € Q is any point on the fiber over.s, h, is the horizontal lift
operator, FL is the Legendre transform associated to L, FL : TQ — T*Q,
and (2 is the curvature of the connection. Figure 6 exemplifies reorientation
manouvers performed by cats, gymnasts, and astronauts (without violating
the constraint of total zero angular momentum). Not surprisingly, the
momentum map p is the key ingredient in this strange force.

i

Figure 7. Snakeboard (from [5], with permission from the authors). Shape
variables: (v, ¢1,¢2). Lie group variables (z,y, ).

Once the reduced equations are solved, the full motion is recovered on
Q by horizontally lifting the trajectory s(t).

s b4 * .
15In coordinates, the familiar a%(%f) - %, which transforms as a covector.
k3 k3
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To finish, we would like to mention a hybrid situation, in which the
nonholonomic system depends on parameters that can be used as control
variables. This new feature, which allows potential applications in robotics,
especially in biomechanics, was first studied by Jerry Marsden and his asso-
ciates; see {5]. A delightful example is the snakeboard, (see Figure 7) which
is a souped-up version of a skate. The rider can twist his body (coordinate
) and turn the front and back pairs of wheels (coordinates ¢1, ¢2).

The structure of such D’Alembert control systems is as follows: denote
g the group variables, u the momentum, and s the parameters that describe
the shape of the system. At a glance, the equations of motion have the form

97§ =—A(s)s + B(r)u (geometric phase), (22)
fo=48"(a(s)3 + B(s)n) + pTy(s)p (momentum), (23)
M(r)s§=—-C(s,8) + N(s,$,u) + 7 (shapedynamics). (24)

If in (24) the forcing 7 = 0, the shape varies solely by the nonholonomic
dynamics. The rider can impose a full control over s. Equation (24) is
deleted and a prescribed s(t) is imposed in the first two equations. The
reader should study Figure 8 and convince himself (herself) that indeed p
(momentum about p) is not conserved.

Figure 8. Angular momentum about p is not conserved. Not even p is
conserved.

Summarizing: We have described three (four, if we include nonholonomic
systems) situations where momentum maps and geometric phases interplay
through adiabatic change of parameters, reconstruction, or geometric con-
trol. We anticipate that interesting examples will be found in which these
features appear simultaneously.
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Part 2: Classical Adiabatic
Angles

Geometry glitters, Birkhoff used to say, but to find gold one has to dig
harder into analysis. So we begin with a disclaimer: we will omit here

important issues related to resonance phenomena’$.

4 Averaging Heuristics

This section presents a geometrical derivation of Hannay’s classical adia-
batic angles. It is a pleasure to acknowledge conversations with R. Mont-
gomery and A. Weinstein; the reader will find their papers [8, 11, 12] very

inspiring.
Let 6 = (61,...,0,) denote angle variables in T" = §* x --- x §* (n
times), and I = (I4,...,I,) the corresponding action variables. Consider a

family of canonical transformations, parametrized by z € X:
F:(I,6,z) > (p=p(,0,z), g=q(l,0,z)). (25)

More abstractly, we may think of a family, parametrized by £ € X, of
Lagrangian foliations on a symplectic manifold (M . W):

{‘Cm }zEX . (26)

We consider a family (again parametrized by X) of completely inte-
grable systems H(p,q;z) = F(I;z). Now take z = z(t) and extend phase
space and Hamiltonjan in the usual way:

H(p,q,E,t) = H(p,q,t)+ E, w=dpAdg+dEAdt

Here E is a dummy moment associated to a time “coordinate,” such that
H = —E = 8H/dt (since H is constant). In the extended space the map
(E,t,1,6) — (E,t,p,q) is not canonical: the symplectic form pulls back as

w = dE Adt +dI Adf + (I,£)dI Adt+ (6,t)dd A dt. 27

16See Lochak and Meunier {8], Golin, Knauf, and Marmi [4], and (for time estimates
of the adiabatic approximation) Neishtadt [10].

e
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Here, for u,v = I,0, ort, (u,v) denotes the Lagrange bracket
(u,v)= =2 — % . (28)

Lagrange brackets are not as famous as Poisson brackets, so, to warm

up, we propose a simple exercise.

Exercise 4.1 Let (M?",w) be a symplectic manifold, and H : M — IR be
a Hamiltonian. Given any coordinate system u = (uy,...,uzn) Hamilton’s
equation is written as

L(dy, ..., U2n) = (8H/Buy, . ..,0H/Bugn)",
where L is the matriz of Lagrange brackets
Lij = (us,u5) = w (%, 5%) .
The relationship with Poisson brackets is transparent: L~ = P, where
Piy = {ua, 5}
Exercise 4.2 In our case, the matriz of w with respect to the basis
8/0E, 8/8t, 8/81,0/00
is [ = J + K, where

[0 10 0] 00 o0 o |
-100 0 00 (D0
J= , K= . (29)
0 00 1 0,0 0
[0 0-10] o@.Ho o |

Proposition 4.1 In the action-angle coordinates, Hamilton’s equations for
the time-dependent system H(I,0,z(t)) are given by

L;i‘-iz(E,t,I,e)T =grad F = (1, iy, F1,0)". (30)

Exercise 4.3 Let the parameter x vary slowly in time, T = z(et), and K
be O(e). Show that L~* = —J — JKJ + O(é?).
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Proposition 4.2 If z = z(et), then the Hamiltonian vector field

d -1
7 (E,t,1,0) = L™ gradF
1s given by
6 = OF /I + (t,1) + O(e?), I = —(1,6) + O(e?), (31)
E = -8F/8t + (t,0)0H/3I + O(e?), (32)
where the Lagrange brackets are O(e).

Notice that the angle coordinates are fast (due to the term 8H/0I),
and all the other terms are O(e) or higher and therefore slow.

Given any function f() of the angle variables, we denote by (f) the
average

1
) = g L 1@ @0,

The “averaging principle,” in its outermost heuristical form (see Arnold,
[2, chapter 10, section 52], states that it is “reasonable” to replace (31) by
the averaged system!”

6 =8H/dI + (t,I), I =—(t,0). (33)

Caveat: It is not easy to transform the word “reasonable” into sound math-
ematics. See Neishtadt [10].

Definition 4.4 Family (25) is free if there is a globally defined generating
function S(I,0;z) such that

pdq - Idf = d(I’o)S. (34)

From now on, we assume all families of Lagrangian foliations to be
free. The reason for this hypothesis is as follows.

Lemma 4.5 If (26) is free, then (t,0) = 0. So in the averaged system (33),

i=o.

17The idea goes back to work of Gauss on celestial mechanics; he proposed replacing
a perturbing object by an annulus of same total mass.
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Proof. For fixed z the 1-form pdq — Id is locally exact; that is, locally
there exists a function S(, ;) with pdg — Id6 = dq 1,6)S. In particular,

pdq/86 =1+ 8S5/06 .
Differentiating with respect to ¢, we have
Pqot + Pegs = Sor-
Now,
(£,0) = Prgo — Pods = [—Paelo + Pgor + Pege = [~Pgs + Stlo- (35)

Since the average of a 8/90 is zero, we are done. . ]

We say that I is an adiabatic invariant. Heuristically, one expects that
the solution I(t) of the full system stays close to O(e) from the initial value,
at least for times of order O(1/¢). However, due to resonances, this is not
necessarily true for systems with more than one degree of freedom [10].

Having said that, we will proceed bluntly with the averaged equations,

6 =8H/8I + (t,I), I =0. (36)

5 The Classical Adiabatic Phases

Curiously, it was only around 1985 that attention was given, by Hannay
and Berry, to the extra term in the equation for §. The solution of the
averaged system (36) is given as follows.

Theorem 5.1
T
8(T) - 6(0) = / Hy(l,t)dt + / pdz, p=(&Dydz,  (37)
0 C
where

1

@) = G

[ o —pra 0. (38)

The first term in (37) gathers the dynamic phases, while the second
term gathers the geometric phases. Geometric phases are indeed geometric:
their value does not depend on reparametrizations of the curve C : £ =
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z(et) € X. They depend solely on the family of Lagrangian foliations, not
on the specific time-dependent Hamiltonian.

Definition 5.2 The I-form p in parameter space, depending on I, with
values on R", is called the Hannay-Berry 1-form.

Remark 5.3 For those familiar with principal bundles: since p has vector
values, one suspects that it defines a connection on a torus bundle over X
(fizing the values of I). See Montgomery [9]. More generally, can one define
a connection for adiabatic variations of general systems, not necessarily
integrable? See Weinstein [13].

Exercise 5.4 Prove Berry’s original expression
(z,I) = gradi(—pgz + Sz)-
Although C can be an open curve, in most cases we are interested in
finding the geometric phase for a closed curve C in parameter space. If C

bounds a disk inside X, we can use Stokes’s theorem.

Theorem 5.5

dp = —grad; f. (39)
Here 3 is a real-valued 2-form, given by
1
B(I =———/ i, x;) dz; Adz;, 40
( ) (27'(')" 9T g( z ]) J ( )

and where (z;,x;) are the Lagrange-like brackets

2y =S (9P Oax _ Opk Og
(x”xj)_%:(a:c,- Oz; szaam)' (1)

Exercise 5.6 Prove Theorem 5.5.

Hint. Use Exercise 5.4. You can also start directly with (38). When
computing dp, interchange some indices. For instance,

Z Prz:9z; AT AdTj = — Z P1z,4z; dT; A dz;.
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Ep Jq i A J sign in (39) a'nd
I €rms hke z; x;91 dz" dl El"IuSh‘ I otice th e minus
the sum E i<j mn (40)‘ ]

Definition 5.7 3 is called the Hannay-Berry 2—forr.n, a 2-form in param-
eter space X depending on the value I of action variables.

Exercise 5.8 For fized values of (I1,8), define the function
)\(Iyg) X - M2n

using the family (25). Then

S (@i, z5) dai Az = Ny o) (42)
i<j

where w is the symplectic form on M.

Given a closed curve C in parameter space, bounding a disk D C X,
denote by D(I,8) C M the image of D under A(1,6):

D(I,6) = \z,0)(D)-

5.1 The geometric phases can be written in an almost intrin-

. (43)
—grad; </D(I,9) w>

Remark 5.9 (i) To make this expression completely intim'nsic, onee neef
to study its dependence on changes of actionta'n,gle .vamables (1,6,z) -
(J,¢,x). (i) Weinstein used (42) as a starting point to deﬁne ney}Olds
variants for loops of symplectomorphisms on compact symplectic mant

[12].

Proposition
sic way as

We finish this section with a question: Relax the freeness hypotl.lefsis
(Definition 4.4) for (26). Is there any new term, of topological origin,
present in the classical adiabatic angles?
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6 Pendulum with Slowly Varying Gravity

This example is closely related to the Foucault pendulum. Take units so
that mass, gravity constant, and length are all equal to 1. We have

H(pg,7) = 3lpl” + (0,2) ()

with ¢ € $%,(p,q) =0, and z € X = S2 gives the direction of the force of
gravity.

The spherical pendulum is obviously integrable because of the S* sym-
metry. Fix z = e3, the north pole, so the gravity vector is 7 = —ges. One of
the momenta, say Iy, is the angular momentum about e3. The other, I, is

the area enclosed by the energy curve in the reduced one-degree-of-freedom
system (a complete elliptic integral).

The solutions require elliptic functions (of time). In the case of the
simple pendulum, three different sets of action-angle variables are needed,
one for the libration regime and the other two (essentially the same) for
the circulation regimes. It was recently found that it is impossible to find
global action-angle coordinates for the spherical pendulum!!®,

Exercise 6.1 Make a bibliographical search and get the solutions of the
simple (planar) pendulum and of the spherical pendulum in terms of elliptic
functions. In other words, find ezplicitly the canonical transformations

P= P(Iy 0)7 Q = Q(I, 0), (45)

where Q@ are the Cartesian coordinates and P = Q) the corresponding mo-
menta.

For the parametrized system (44), we may write

9= R(z)Q(I,6), p=R(z)P(I,9), (46)

where (P, Q) are given by (45) and R : $2 — SO(3) satisfies R(z)-e3 = z;
that is, R(z) has z as the third column.

Exercise 6.2 R does not exist globally!

18There is a monodromy phenomenon in any domain I = (11,I2) € D around the
unstable equilibrium. We will not discuss this beautiful issue here; see [3].
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Hint. The sphere is not “parallelizable”; even worse, it is not “combable.”

Exercise 6.3 Try the mission impossible of constructing R globally. (i)
Consider stereographic projection TpS? ~ R — 52 — {—p}, with rays
emanating from —p. Via the differential, map the Euclidian (parallel) fmrfze
on T,82 = R? to a frame on §* — {~p}. Then apply Gmm—Schmu.it
ortogonalization. Sketch a picture; how does it look near —p? (ii)20btam
a more femiliar picture mapping the polar coordinates frame on IR® — 0 to
the meridian-parallel frame on S? — {p, —p}. What happens at p and —p?

At first sight, performing the averages over the tori in (40) using the
action-angle system (45) seems to be a byzantine exercise involving elliptic
functions. However, from the special “isotropic” form of the canonical
transformation (46), we have the following.

Exercise 6.4
B=f(I;,I,) area element of S*. 47)

Exercise 6.5 To find f(I1, I2), it suffices to compute the Lagrange bracket
(z1,2) n(40) at T, = e3.

Exercise 6.6 Use stereographic coordinates z1,%2 at the tangent plane at
e3, as in Exercise 6.8 (i). Observe that R(e3) = I and
OR/0x) =e2x-, OR[O0x2=—€1 X-.

Draw a picture. Show that the Jacobian at the origin is 1.

Exercise 6.7 Fill in the blanks below. With spherical coordinates

sina cos 8 Gcoso cos B — Bsina sin 8
Q= |sinasinB| , Q= |acosasinB+ fBsinacosf|, (48)
cosa —& sina

compute

Bp/dzi=esx Q="+,
320/3102=—61><Q=“',
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BQ/B.'Bl:ez)(Q_—_...,
6(1/6{1}2:—3le=...’

Opx Dgx _ Opk Og _ 2 g
3. Ber By~ Gy Bny == S0 s)

Miracle! The quantity to be averaged over the tori is precisely minus
the angular momentum of the spherical pendulum with respect to the axis
T, = €3.

(Here’s a shortcut. For the special parametrized family of the form (46),

Opr Oqr  Opx Ok

Xk: B2, Dy~ Bz, 9z, — (27PN erxa)H(erxp)(e2xq) =prg2—p2a1)

The argument works for any integrable system with symmetry S!
(Hannay’s top [5] is the simplest example), and parameter space is X = $2.
We get f = —1I; in (47) so

B = —I area element of §2, (50)
where I is the momentum associated with the S! symmetry. Taking into

account the minus sign in (39), we conclude as follows.

Proposition 6.1 For systems H(e,x) with S! symmetry aroundz € X =
52, the holonomy is the spherical angle in S% enclosed by the tip of the
symmetry azis T.

7 Slowly Moving Integrable Mechanical Sys-
tems

Recall the framework in section 1. We have a natural mechanical system
with Lagrangian L = T — V on TS, where S is immersed on a bigger
Riemannian manifold W. W is acted upon by a Lie group G so that every
map iy : S — g- S is an isometry.
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We set .
adQ,t) =g(t)Q, p=9g(t)"""F, (51)
so that in the Hamiltonian formalism,
H(g,pt) = T(p) + V{g(t) ™ - @) (52)

The parameter space X 1is the Lie group G.
As an example, we presented the “Star Wars” Foucault pendulum.

Recall (4). As a warmup, we propose simple exercise.

Exercise 7.1 The linear approzimation for —~k/lq| is

o(t)(g - () T%  9t) = K/Ir(B)I2.

As we mentioned before, we need no linearization, nor do we require

that the pendulum is in the small oscillation regime. We just use the
: ¢

S! symmetry around the axis z = ﬁ%[ The parameter space reduces to

X =1R®—0 = 52 xIR*. The canonical transformation (46) is now replaced

b
” g=r+R(@)Q, p=R(@P, (83)

where r=|r|-z, R(z)es=z=r/|r|.

Exercise 7.2 Show that
B = —I element of solid angle.

Hint. Show that the affine part in (53) produces no holonomy.
8 Hannay-Berry’s 1-Form for Moving Sys-
tems

3N . 93 ;19
For concreteness, we suppose that W=R"", with the familiar metric

N .
i

19This is not too restrictive due to Nash’s embedding theorem.
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on W = R3M. Assume that the mechanical system H=T+V in T*S is

completely integrable: there are action-angle coordinates (I, HeR"xT

such that H(P, Q) = K(I) under the canonical immersion of T*S — T*W:
. 9Q; )

Q;=Q;(1,8), P=PBy(1, 9)=m,-Qj=mj—aQ0—J ‘K1, j=1,..,N. (54)

The parameter space X is the Lie group SE(3) = S0(3) x R? acting
diagonally on W = IR® x --- x R3. The parametrized family of canonical
transformations is given by

p; = RP;(1,8), ¢;=RQ;(I,6)+r, j=1,...,N (55)
where g = (R,7) € SE(3).

Theorem 8.1 The I-form p on X = SE(3) is left invariant and vanishes
in the translation subgroup. For any v € SO(3),

p(v) = grad; (—M(1,8)) - v. (56)

Here M € R? is the total angular momentum vector, (, ) is the aver-
aging operator, and we identify sO(3) = IR® in the usual way:

0 —-wvi+uvy 7
+u3 0 —vy| < |va|- (57)
—-vp+v; 0 Lvs

Proof. The reader should decompress our shortened notation. Theorem
5.1 gives

p = (prqr — ¢-p1) dr + (Prar — qrp1) dR.

The first Lagrange bracket averages to zero. This is because (55) gives
pr =0, ¢» = identity operator, and (54) yields

03]
Pr=17, (mKr-Q(1,8)); .
For the second bracket,
PRQr—¢rpr = (dRP, RQ1)—(dRQ, RPr) = (R"'dRP,Q1)~(R™'dRQ, P;) ,

where we changed the inner product notation to (, ). The presence of the
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R-1dR implies left invariance. Using the correspondence (57), we get

p=dv- <Z P; x 8/01Q; — Qj % 6/31Pj> ,
J

where X is the vector product in R3. In short notation,
p=dv-{PxQr—QxPr).
It can also be written
p=dv- 2P x Q) =dv- Z-M),

as we wanted to prove.

Example: Hannay’s Slowly Rotating Planar Hoop

A unit mass is travelling along a hoop C : s — (z(s),y(s)) of length L.
Action-angle coordinates are given by
2ms Ls
8= —L-— , I= —2;
The hoop is slowly rotated through a full turn (parameter space G =
S%). Compute the geometric phase (the 2 factor in front is the integral

over S1):

1 2n . .
Ag=ond Ll (y& — zg)do.

dl 2= Jo
One gets
Ab= 27r% 2 OL (y& - xy)ds
= 21% :I /oL(yda: — zdy)$
- (QL” 2% [I?iydz - :rdy]
that
K A6 = —SwZ%,
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where A is the area enclosed by the hoop. In terms of the arc length,

A
As = —47rz. (58)

If C is a circle of radius r,
[As]circle = _27”'7

which is simply an artifact, since the origin of the arc length advances by
2mr as the hoop makes a circle. Thus we must add L to (58) to cure this
“Jules Verne’s syndrome”:

As=1L- 411'% , (59)

which is > 0 in view of the isoperimetric inequality.

9 The Main Theorem

The astute reader will suspect that something deeper is going on, involving
the momentum map.

Theorem 9.1 Let N a symplectic submanifold of a symplectic manifold
M. Assume that a Lie group G acts symplectically on M with momentum
map J : M — G*. Fiz o Lagrangian foliation on N. Thenn:G-N — G
is a symplectic fiber bundle, and its torus subbundles T (locally defined by
fizing a set of action variables) are T™ fiber bundles over G. Moreover, the
Hannay-Berry 1-form

p(§) = grad;(—Je(1,6)) (60)

defines a parallel transport operator on the torus subbundles. The parallel
transport does not depend on the choice of action-angle variables on N.

Exercise 9.2 Prove Theorem 9.1 for N =T*S, M = T*W, where S C W.
The Lie group G acts on W by isometries; the action is lifted to T*W via

9-pg=0(9-9,(9g71)"py)-

Hint. Take local coordinates (P,@Q) on T*S and action-angle coor-
dinates P = P(I,6),Q = Q(I,9) such that PdQ ~ Idf = dS(I,6). The
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lifted action p, = g - Py satisfies pdg = PdQ. Therefore, for the family of
symplectic immersions p = p(1,0,g), ¢ = q(I,8, g), we have

pd(1,0)q — 1df = dS(1,6),

with generating function .S independent of parameter g € G. In particular,

9&5- = 0. From Exercise 5.4 we get

p ={g,1)dg = grad;{—pq;)dt,
where

Pco = P(5Qun0) = KPQ), 5O =6 ()

Problem 9.1 Are there global obstructions to define the torus subbun-
dles T?

9.1 Invariance under a Maximal Torus 77

The reader unfamiliar with Lie algebra theory can stick to r = 1, T =
8, G = SO(3). N is the phase space of a one- or two-degrees-of-freedom
Hamiltonian with $1-symmetry. An extra degree of freedom is allowed, still
maintaining integrability; there will be no holonomy for the latter angle. He
or she can go directly to formula (63), and in the next section we compute
the holonomy A6, for several examples.

Suppose G is compact semisimple, acting on M with momentum map
J. Suppose that N is invariant under the action of a maximal torus T" of
G, with dim N = 2r or 2(r +1). Choose a basis {¢;, }i=1,... dimc of the Lie
algebra with the first £1,..., &, € t9, the Lie algebra of T™, the last ones in
the Killing-perpendicular of 7 C G.

Corollary 9.1 The Berry-Hannay 1-form is

p(€) = —projection of & overt”. (62)

Proof. Choose action-angle variables for N such that the first r actions are
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the momenta associated with &;,...,64 €t":

If dim N = 2r, we have the Lagrangian foliation. If dim N = 2(r + 1),
complete the set of canonical coordinates for /N with any pair of conjugate
coordinates (Ir41,0ry1)-

Claim. The average over T™ of the momenta associated with Lie algebra
elements in the Killing-perpendicular of ¢ is zero.

Then (62) follows immediately from (60). ]

Proof of the claim. Decompose £ in (61) in its t¥ component £ and the
Killing orthogonal component {. Use coordinates (p(t), q(t),8(t)) on N as
above. By the equivariance of the momentum map, the claim boils down
to the following fact from Lie group theory (see [1, section 4.10}):

Let ¢ be in the Killing orthogonal to t. Then fT Ad,Cdg = 0. [

Remark 9.3 Impose no restrictions on dimN = 2(r + s). Introduce coor-
dinates (p,q,1,6) on N so that § € T" corresponds to the mazimal torus
and I are the associated momenta as above. We have s extra degrees of
freedom, g, with conjugate momenta p. A T" invariant Hamiltonian on N
writes as H,(p,q,1). In general, H, is nonintegrable, but it has the invari-
ant measure d*p A d*q A d"I A d76. Assuming ergodicity, an (even more)
outrageous averaging principle can be invoked:

A perturbation eH,(p,q,I,6) can be replaced by its average along H,.

Since d"0 is a factor in the invariant measure, any perturbation whose
average over T™ vanishes does not contribute (to first order) to the per-
turbed dynamics. In our case, we have the time-dependent Hamiltonien
H,(g(et)™ - n) constrained to g(et) - N C M. Using the symplectic coordi-
nates (p, q,1,0), it writes as H, — €Jy-14, where J is the momentum of the
G-action on M. It is reasonable to conclude that (62) remains valid, and
there is no holonomy for the (p,q) component.
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Summarizing: Let C : g = g(et) a curve in G (not necessarily closed).
The non-vanishing geometric phases Ad;, ¢ = 1,...,d, associated with the
maximal torus T¢ are given by

Af; = —proj, /C g ldg. (63)

The integral [, g7* dg is the hodograph of C C G to the Lie algebra G.

9.2 Isotropic Oscillator

Let a planar isotropic harmonic oscillator or any one- or two-degrees-of-
freedom system with S? symmetry be adiabatically transported along a
curve C in IR3. Recall that the Frenet frame R = (t,n,b) satisfies the
Frenet—Serret equations

d
t =rn,n =—kt+7b b =—7n, (Iz——),
ds

which in our notation writes (using the correspondence (57)) as
R YR « (1,0, Kk)ds. (64)

e If the oscillator is transported along the oscullating plane (¢,n), then
we project R~1dR on the third axis. Equation (63) gives

Af = —/ Kds. (65)
c

o If the oscillator is transported along the normal plane (n,b), we
project over the first axis, so

AG=-— / 7 ds. (66)
C

This phenomenon has been observed in optical fibers (see [11]).

e For a surface curve, we use Darboux’s frame R = (¢,n, N), where t is
tangent to the curve and N is normal to the surface. The structure
equations are R~'dR = (14, —Kn, Kg), Where x,, is the normal curva-
ture, K4 the geodesic curvature, and 7, the geodesic torsion. If the
system is transported along the tangent plane, then the holonomy is
minus the total geodesic curvature along C. Using Gauss-Bonnet, we
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A9=—/ngd8=—27r+//KdS, (67)

where K is the Gaussian curvature?C.

get

Exercise 9.4 The term —2n is missing in Proposition 6.1. Is there a
mistake?

Answer. Both results are correct. We made two mistakes that cancelled
out. In Proposition 6.1 we used the parallel-meridian frame on S2. 3 is
singular at the poles, which produces an extra 27 (which we ignored there).
Well, this oversight is compensated by Hopf’s umlaufsatz (the tangent turns
by 27 around a simple closed curve). Since the angle is measured from the
tangent vector, a 27 should be discounted, which we did not do.

9.3 Foucault’s Pendulum Revisited
We take the moving frame (r(y), R(y)) along the circle of latitude § — 1.
Exercise 9.5 Here R™1dR = (—sin, 0, cos¥)dep.

Thus
Al = —27cosyp. (68)

Exercise 9.6 Transport adiabatically Hannay’s top along the center circle
of the Moebius strip.

10 Final Remarks

At least two issues related to Corollary 9.1 may have disturbed the reader.
First, it does not apply to our examples! SF(3) is not compact, and the
symplectic submanifold N is only invariant under S x 0, that is, if there
is no translation part. Not to worry: by Theorem 8.1 the translation part
r(t) € R3 of (r, R) € SE(3) produces no holonomy. The reader should not

20 According to Klein [6], this result was first discovered by Radon as a “mechanical”
demonstration of parallel transport.
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have difficulty to modify the statement of Corollary 9.1 in order to handle
these cases.

The second issue is not only embarrassing, it is actually frightening:
our proof of Corollary 9.1 has a flaw when dimN = 2(r + 1)! Given a T"-
invariant Hamiltonian H,(p, g, I), in general (as we observed in footnote 5)
6 = H;(I,p,q) # const. We see that 6 is not uniform in time (even if H
is integrable). Retracing all logical steps to Theorem 9.1, we see that (in
principle) we should replace § by uniformizing variables, which we denote
«. In other words, we should average over the latter, not over §. What
comes to our rescue is Remark 9.3. It is declared that time averages can be
replaced by space averages with respect to the measure dp A dg A d"INd6.
A justification of this more general averaging principle is in order?!.

To close this chapter, we list some examples, not discussed here for lack
of space. They are discussed in our paper {7]. We leave them for further
reading:

o slowly rotating elliptic billiard,
o rigid body with slowly changing inertia matrix,
o systems subjected to a strong constraining, nonhomogeneous, force,

o coupled slow—fast mechanical systems.
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Part 3: Holonomy for
Gyrostats

11 The Hamiltonian

Let X,Y, Z be the principal axis of inertia of the carrier. For simplicity,
consider just one flywheel on the Z-axis of the inertia ellipsoid of the main
body. Let X be the double eigenvalue of the flywheel inertia matrix, A3 its
third eigenvalue; M is the fiywheel mass, g its angular velocity, and d the
distance between the centers of mass of the carrier and flywheel.

Proposition 11.1 The kinetic energy is a quadratic form in the Lie alge-
bra R x s0(3), given by

1 . 1,
E= %(m,n) + -;—(A+Md2)(Q§+Q§) + §A39§ + X308 + 5,\302. (69)

Denoting by I, I, I3 the eigenvalues of I, the inertia matrix of the
main body,

1 . .
E= 5(0’ le 92’93)-[9(0’ 01792’93)t’ (70)
where I, the inertia operator of the gyrostat, is given by
A3 0 0 As
L= |0+ M+ 1 0 0
971 o 0 A+Md2+I; 0O
p 0 [} A3+ Is

Using the coordinates
Qg = (6,0, 0, )t (71)
for G (Lie algebra of S x SO(3)) and
M, = (I, M, My, M3) (72)
for its dual G*, it follows that the Legendre transformation is

M, =1, (73)

Consider the pairing G* x G, given by 2h = (Mg, Qg).

IRE A TRELET
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Proposition 11.2 The energy of the gyrostat is expressed in terms of the
momenta as
h= (M, [;M,). (74)

Exercise 11.1 Inverting I, obtain

Seh 0 0 4
e 0 w0 o
¢ 0 °  memar 0
—713- 0 0 fs—
Moreover, since g = I71M,,
M M, 1 M;
= = — 2 =—— 4 =
TR T ME T L ae b Et T ™
. 1 1 1
Proposition 11.3
1 M? M2 (Ms—1)2 2
h== 1 2 3 —_.
2<11+)\+.Md2+12+)\+Md2+ L th (77)

Trajectories are intersections of a fixed momentum sphere |M|| = J
with the energy ellipsoids (77) with varying energies h, where I is taken
as a parameter. The centers of the ellipsoids vary along the Z-axis. The
possible phase portraits as a function of the parameter I are depicted in
Figure 9.

Exercise 11.2 Derive the Hamiltonian (69). See section 15 below.
Is there a Poinsot description for gyrostats? The answer is “more or
less,” since the invariable plane moves up and down and the herpolhodes

are not planar curves.

Exercise 11.3 Check this formula, which can be used to define the inertia
ellipsoid:

2
02 + 02 + 0% = 2h — /{— (78)
3
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Figure 9. Reduced phase portrait for a rigid body with one flywheel. Top
left: Euler system I = 0. For sufficiently big I, there are no unstable
equilibria (bottom right). The satellite is then stabilized.

where
a=L+A+Md®, B=L+ I+ Md?, y=1I. (79)

Proposition 11.4 (Modified Poinsot description). Replace the carrier by
its inertia ellipsoid. After a polhode period T, the plane perpendicular to
m and touching the inertia ellipsoid attains the same height. In particular,
the holonomy angle A¢ still makes sense.

Proof. A short calculation gives
(w,M) = const. + Q(¢t)I, (80)

showing that the polhodes are planar curves only when I = 0. [

12 Derivation of Formula (14)

We follow Montgomery’s paper [15], pointing out the modifications where
necessary.
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12.1 Where and What to Integrate?

Configuration space is parametrized by three Euler angles
¢ = Z(z,nodes), ¥ = Z(nodes, X), o = £(Z,z), (81)
and one more angle 8, which gives the position of the flywheel.

Considering, on the Lie group G = SO(3) x S, the left equivalence
T*G ~ G x G* gives the coordinates

((P, wy g, 0’ Ml) M2a M3y I)

We define an important closed curve C = C1UC3, in a three-dimensional
submanifold P of phase space T*(SO(3) x S'), fixing the constant val-
ues m,I, h. Curve C; is described by the true dynamics in the interval
0 <t < T, where T is the period of M(t) in the reduced dynamics; more
precisely, C is given by (p(t),¥(t), o(t),8(t), M(t), I).

For Cy we fix M(t) = J and I(t) = I, where without loss of generality,
J is taken parallel to (0,0,1). The coordinates ¢ and 8 vary from 0 to Ay
and from 0 to Aé, respectively. The remaining variables are fixed. C; and
C> meet at the starting and ending points.

Exercise 12.1 The action p dq (canonical form defined on phase space)
can be written as
pdg = (Mg,dQg) =Idf + M - dQ. - (82)

Here dSQ is a vector of 1-forms. Find them??.

Hint. The calculations for dS2 are in [15].

12.2 Applying Stokes’s Theorem

Consider any two-dimensional surface ¥ in P bounded by C. We compute
the line integral of p dg along C and equate it with the integral of d(p dg)
over X.

2270 get the holonomy, one does not need the explicit expressions. The experts will
tell you that the left and right “KAKS brackets” differ just in sign.

anvimibada i |
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12.3 Line Integral over Ch
Since (mg,wg) = 2h, we get
(mg,wg)dt = 2RT. (83)

C:

12.4 Line Integral over C;

i ? er:
Here we get one more term, besides the term JAp in Montgomery’s pap

/ (I,0,0,J)-(d@,0,0,dtp)=JA¢+IAO. (84)
Ca

12.5 The Surface Integral over &

Actually, we compute the integral over the region T = M(X), where
(M, I) ',T"(SO(3) x §1) — §% x R. The first component M sends ro-
ta.ti’on matrices R to points R~*J of the sphere:

/ /2 dtpda) = | /M(E)=T Jar = JT, (85)

where T is the solid angle enclosed by the trajectory of the reduced system.

13 Holonomy for the Gyrostat
Using Stokes theorem and equations (83), (84), (85), we obtain
onT - IA0 (86)
L e A
Ap = 5

Observe that A6 can be obtained by a quadrature using equation (76):
T
¥ L4 : / (87)
={=+—)IT-+ Ma(t)dt.
ao= [ b (13 * A3> T Jo

Remark 13.1 For the rigid body, Levi [10] made tﬁe beautiful obsérzatzlt(;lrz
that the polhode, viewed on the inertia ell'ipsozd’, 18 tm7.zsforme<§ me:m
curve M(t) in the momentum sphere by Gaw.fs s map‘pmg l?f :‘em . thrye
differential geometry. This s the starting point of his derivation
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holonomy formula®®. We have also extended this approach for gyrostats

[5].

14 Final Remarks

Still another derivation of the holonomy for the rigid body follows from a
general reconstruction formula, due to Marsden, Montgomery, and Ratiu
[14], using connections on principal bundles.

In this example, the motion occurs simply by inertia in the configura-
tion space of carrier plus flywheels. However, we can formulate an inter-
esting control problem, where we allow “protocoled” flywheel motions and
we desire a prescribed carrier holonomy. We anticipate that two flywheels
suffice to achieve any reorientation.

Problem: Locate the flywheels optimally and find the optimal flywheel
motions ;(t) to achieve the desired reorientation. For instance, if we have
one flywheel, located in the Z-axis, we get the following time-dependent
Lagrangian on T'SO(3):

1 1 .
B = 3(I0,0) + 500+ M) +9) + S+ Nl (88)

Notice the presence of the control variable 6 in the last term.

Another classic example is Kirchhoff’s problem of the motion of a
solid body through incompressible, inviscid, irrotational fluid. Here one
has geodetic motions of a left-invariant metric on the group of rigid mo-
tions of three-dimensional space. The problem has six degrees of freedom; it
is nonintegrable except at exceptional cases. See [2] and references therein.
It would be instructive to compute the relevant holonomies for the inte-
grable cases and to see what happens in the nearly integrable situations. A
novel feature here is the possibility of translational holonomy, that is, how
much the rigid body translates after one period of a periodic orbit of the
reduced problem.

23Reasoning in reverse, Levi gave a “mechanical proof” for the Gauss-Bonnet theorem
[11).

vé
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15 Derivation of the Hamiltonian

Following Arnold {3}, we use the following conventions for reference frames
and vectors: corresponding vectors in frames K and k will be denoted by

the same letter, capitalized in the former. Thus:

q € k represents a point of the body viewed in space.

Q € K is the same point viewed in the body frame. qg=RQ.

v = § € k is the velocity vector.

V € K is the same vector, but viewed in the body frame. v=RV.
w € k is the angular velocity viewed “from space.”

Q € K is the angular velocity viewed “from the body.” w = RQ.
m € k is the angular momentum viewed from space.

M € K the angular momentum viewed from the body. m=RM.

Let f be the isomorphism between skew symmetric magrices and vec-
torsinR3, f: A— R3, f(Aw) =W = (wy, w2, ws), w € R”, where

0 —ws w2
Aw= wy 0 —w ,AWEA-

—wz w1 0

We denote the vector product with the same symbol [, ] as commutators
of matrices. We have a Lie algebra isomorphism, namely,

F(1A, B)) = [f(4), f(B)]-

Contribution of the Carrier

1 2
Ecorrier = § Z pvy
i

=%ZuV?
i
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1 2
=3 Z B, Q]
1

- % 5w, Q4 [0, Qi)
=3 uQn(2,Q1,9)
= % S,
- %(M, Q)
- %(m, Q).
Here, as in the case of the usual free rigid body, we can assume that

the positive definite symmetric matrix I is in diagonal form.

Contribution of the Flywheel

A point in the flywheel is written as
a=RGQ+ RP.
Differentiating, we get
4=R(GQ) + R(GQ) + RP
= (RR™)RGQ + R(CQ + GA) + BRp
=RR™Y(q~-p)+R(GG)GQ + RRp.

Therefore,

q= [w,q—p]+R[9,(Q-—P)]+[w,p].

where © = f(SS71), © = f(S-18). Let Eq; be the kinetic energy of the
flywheel. Then we have:

Beot =Y 54(l0,0 ~ Bl v,a ~ p])
+3 u(lw.q - pl,R[©,Q - P))
+ 37 34, vl [, )
+ 3 Su(R©,Q - P,R©,Q-P))
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+ Z/.l,([w, q-p}, [w,p])
+> u(R[©,Q - P),{w,p)).

Calculations in a Particular Case

For simplicity, we place the flywheel to the Z-axis of the inertia ellipsoid
of the main body. Clearly, the inertia operator of the flywheel alone in the
base K (I.q¢) is diagonal, with two equal eigenvalues (M) and one possibly
distinct (A3z). The equality of the first two eigenvalues refiects the material
symmetry of the flywheel implying that

GIcatG—-l = dcat:

This is true because G is a matrix of the type

cos ft — sin 6t 0
sinft cosft 0
0 0 1

Thus © = f(G~1G) = 6(0,0,1).

Nonvanishing Terms

- guo,a=plfe,a - p) = 3 24((9%, Q - P))?
=Y 3u(Q~P,i2,Q - P]L,0)
= 5(0LaG™'0,9)
= %/\(Qf +02) + %Aaag.
From (89), we get

> ullw,a-p,RO,Q-P))=> u(2,Q~-P|,[©,Q-P)
= Z/‘L([Q - Pv [91 Q - P}]a Q)
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= (Icate’ n)
=(12,:0)
= X300
On the other hand, since |P| = d, it follows that
1
> w(lw, Bl [, ) = 5 MUK [PY? - (2, P)?)

M{(Q2 + 02 + Q2)d? — Q§d%}

[T TR

M2 (3 +Q3),

where M is the mass of the flywheel. Finally, we obtain an expected term.
Developing (89) in detail, we get:

" Lurie.Q - Pl EO,Q-P) =Y 3u(©,Q - P, ©.Q~F)
=3 tuQ-P,[0,Q-P|6)
- 110t©,0)
= 5(%0,6)

1. 5
= 5)\30 .

Vanishing Terms

Since the center of mass of the flywheel is located at P € K, we have P=o
Thus, from (89) we conclude that:

S w(w,a - b}, [w, p)) = _ (12, Q - PL, 12 P))
=3 u(lQ-P, 9, [P, )
=Y u(@, [Q.Q-P.0))
= M(P, [, [Gf’,ﬂ]])

=0.

3
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Similarly,

> u(R[©,Q - P, w,p)) =) u(®,Q - P}, [,P)
= M([O, GP}, [, P))
=0.

Contribution of the Flywheel

Summarizing our calculations,

1. .
Efly'wheel = 5)‘302

1

+ 5(/\ + Md*)(0F + Q2)
1

+ 5)\392

+ /\3993.
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Part 42 Microswimming

The lives of protozoa and bacteria may be unfamiliar to us “higher” forms of
life, and therefore dismissed as uninteresting. 'We should not be so arrogant:
as Stephen Jay Gould says, to bacteria, we are mountains full of exploitable
goodies. They are much better fit for survivall

E. coli?*, the most common intestinal bacteria, are approximately 2 x
10~%cm in length and 10~* cm wide. They have six flagellar filaments
emerging from random points on the cell body. At such microscopic sizes,
water is so viscous that inertia plays no role.

Reynolds number, given by

Inertial Forces

=ILV/iu= oo
Re=LV/p Viscous Forces’

(89)
where L, V, u are, respectively, a characteristic length, velocity, and kine-
matic viscosity, measures the relative importance of inertia to viscosity in
fluid dynamical problems. If R, <« 1, viscosity effects dominate. Reynolds
number for swimming microorganisms is typically between 10~2 for proto-
zoa and 10~ for motile bacteria. They propel themselves in an inertialess
environment.

“Earnest’ teaches many lessons to the biologist, to the mechanical or
electrical engineer, and even to the psychologist. E. coli moves in a “biased”
random way: runs alternating with tumbles. In a favorable direction, the
runs are statistically longer. But the runs are not shorter in a bad direction,
so Earnest is an optimist. For the basic biophysics of microswimming, see
E. Purcell’s beautiful talk, “Life at Low Reynolds number” {19] and Berg's
book, Random Walks in Biology [1).

Here are some strategies observed in nature:

e E. coli swim using helical propellers that rotate.

o Small nematodes and spermatozoan tails swim using planar undulations.
o Spirochetes swim using internal flagella.

e Synechoccocus swim using traveling compression waves.

24 g stands for Escherichia, but we prefer rather Earnest.
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e Many protozoa swim by waving a layer of densely packed cilia (Figure 10).

Figure 10. Metacrony in Spirostomum. Cilia work in coordination through
a space-temporal wave along the cell surface (Dusenbery [6D.

16 Historical Remarks

The implications of low Reynolds number for microswimming were realized
only in 1930 (Ludwig [17]). Perturbation methods were used by Taylor
([21], 1951) in his treatment of the infinite swimming sheet. This problem
was also discussed in Blake ([4], 1971), and Childress ([5], 1981). Lighthill
([16], 1952) calculated the swimming velocity of a squirming spherical cell.
Blake [2] corrected some of Lighthill’s formulas and adapted Lighthill’s
model to explain ciliary propulsion by replacing the loci of the cilia tips
by a continuous envelope. For certain densely ciliated organisms, such as
Opalina, this model provides good results.

Blake ([4], 1971) discussed the problem of swimming in two dimen-
sions. The swimming velocity of a cell with circular geometry, due to small
amplitude, symmetric traveling waves was approximated using perturba-
tion techniques. Shapere and Wilczek ([20], 1989) interpreted the problem
in differential geometric terms, namely, as a connection on a principal bun-
dle. This description places the problem in a broader class of kinematical
problems that includes satellite reorientation and the ability of a falling cat
to land on her feet (Montgomery 1990, [18]).

AT ST R
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17 The Configuration Space

The configuration space, which we will denote by Q, describes the organism
in its environment and is the space of all parametrized embeddings q :
52 — R3. The image £ = q(S?) represents the outer membrane of the
organism or the ciliary “envelope,”? and will be referred to as a “located
shape.” Tt is important to keep in mind that g is a parametrized embedding:

reparametrizations of the same geometric shape represent different states
of the organism?8.

By composition on the image, there is a left action on Q by the group
SE(3) of Euclidean motions

SE(B)—Q—S. (90)

Figure 11. In what direction will Purcell’s animat go? See [19].

The base space of the bundle is S = Q/SF(3), the space of “unlocated
shapes.” The tangent space T,Q at an embedding ¥ = ¢(S5?) consists of all
vector fields along X,

7: % — RS, (91)
and represents an infinitesimal boundary motion. Purcell’s “cult paper”
[19] has a delightful example with a challenge to the reader; see Figure 11.

::Flagel.lary motion can also be studied, using techniques from slender body theory.
Certain organisms (e.g., synechoccocus ) are thought to swim using what can be
mathematically described as time-dependent self-reparametrizations: traveling compres-
sion and expansion waves along the outer membrane [8].
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The two most important features are the following:

o Q possesses a very natural Riemannian metric, given by the hydrody-
namical power expenditure. Remarkably, the physical constraints for
self-locomotion, namely, no net force or torque being exerted on the
fluid, coincide with the horizontal spaces of the associated mechanical
connection A.

e Swimming velocity is computed in terms of the curvature coefficients

via the small amplitude approximation (104) given below.

To compute the curvature for a specific shape, we need the following
ingredients:

Solutions to Stokes equations with boundary conditions specified on
the base shape.

o An expression for the Lie bracket of these vector fields in the exterior
of the shape.

An expression for the connection form A.

A splitting of the basis vectors into horizontal and vertical.

This program was started by our group in the papers {11, 12, 13, 14].
Collaborations for future work are welcome. The horizontal distributions
for the indicated geometries can be inferred from the work by the following

authors:
Geometry Restrictions
Taylor (1951) [21] Planar Axially symmetric
Lighthill (1952) [16] Spherical Axially symmetric
Blake (1970) Spherical, circular, Axially symmetric
and cylindrical
Shapere-Wilczek (1989) [20] Spherical and None
circular
Ehlers (1995) Elliptical None
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18 Hydrodynamics

Navier-Stokes equations (without body forces) are given by

V.-9=0, p%:—) = —Vp+ uV?29, (92)
where p is the density and @, p the velocity and pressures of the fluid

external to the organism described by the shape X € Q.

In the Stokesian realm where inertial effects are neglected, we use the
Stokes approximation. These linear partial differential equations of elliptic
type are

V.9=0 —Vp+uViH=0. (93)
The nonslip assumption gives the boundary condition ¥ € T5Q, defining a
unique solution, which we denote (X, 9, p).

Exercise 18.1 Recall that the group of Euclidean motions acts on Q. Let
R be a rotation matriz, then whenever 9(7), p(F) is a solution with pre-
scribed boundary values at T, RTH(RF + b), p(RF + b) is also a solution
with prescribed values on RX + b.

Remark 18.2

(i) At each instant the neutrally buoyant, low Reynolds number swimmer
does not ezert zero net forces and torgues on the fluid [5]. The iner-
tial terms in the equations of motion that would account for such an
imbalance are not present (the nonlinear terms in the Navier-Stokes
equations). It is this condition that will define a geometrical connec-
tion on the space of located shapes.

(ii) Because acceleration does not play a role, the equations of motion
are time independent. The boundary condition depends on time, but
the fluid velocities depend only on the instantaneous boundary veloc-
ity field. A given change in shape leads to an instantaneous motion
through the whole fluid no matter how fast it is carried out (s0 long
as R, remains < 1).

(iii) The “scallop theorem” [19]: because of time independence, reciprocal
motions lead to no net translation. Stokes flows are reversible: one
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can stir then unstir fluids if R, < 1!!! There are no low Reynolds
number “scallops”; low Reynolds number swimmers must have at least
two-degrees of freedom.

The stress tensor o is given by

Ou;  Ou;
Tij =—p5¢j+/.t<-5%+a—:;> . (94)

Exercise 18.3 Show, from Stokes eguations, that the stress tensor o 18
divergence-free.

Given any mathematical surface S outside T with normal 7, one com-
putes the field of surface forces (stresses) along S:

f=o(0) 7.
The classic “Lorentz reciprocity theorem” [9] says that the operator
i f

on the space of vector fields along ¥ is self-adjoint and positive. Hence we
have the following definition.

Definition 18.4 The hydrodynamical power dissipation
P=/ﬁaw
b

defines a Riemannian metric on Q, which we call the power metric.

19 The Momentum Mapping

Proposition 19.1 The momentum map (i TQ — se(3)* is given by

u(e) - @B =a- [

7 x o(ﬁ)-ﬁds+6-/ o(d)-AdS (95)
z p)

-

=tb‘-/Fxde+5'~/de=w’-f+5-F,
z z

where we have represented an element of se(3) as a pair of vectors (0, b).
Here F = [;, fdS is the total force, and T = [o7x fdS is the total torque.
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Exercise 19.1 Prove this formula, using the abstract nonsense definition
(16). The identification TQ = T*Q is given by the power metric

(@,0) = / 7- o(w)RdS.
P

Hint. For any element £ = (i, 3) € se(d) of the Lie algebra, £p is an
infinitesimal rigid motion of the shape ¥ and is described by the rigid
motion vector field, Ep(E) = (W x 7+ b)|z. Therefore,

u(Fg) - (@,5) = L (@ x 7+ B) - o(9)dS
=/(u7xf')-a(f))ﬁd5+/E-U(ﬁ)ﬁdS
z z

=1D‘-/an(ﬁ)1‘id5+5-/a(f))r'idS.
b b

Exercise 19.2 Since o is divergence-free, the total force and the total
torque can be computed by integrating along any other mathematical surface
surrounding .

Remark 19.3 The power metric is degenerate in dimension d = 2. In
fact, the Stokes paradoz says that there is no Stokesian flow vanishing at
infinity for a uniformly translating cylinder, or, what is the same, there
is no Stokesian flow past a cylinder that is uniform at infinity. One can
remedy this by admitting flows with logarithmical singularities at infinity,
but we do not pursue this approach. Rather, in two dimensions we admit
that for translations of a shape U = b, its Stokes extension is ¥ = b, in
which the fluid moves rigidly as a whole with constant pressure p = 0. It
follows that (7, E) = 0 for all 7. In other words, the Legendre transform
that associates forces to velocities has a nontrivial kernel generated by the
rigid translations.

Definition 19.4 Vertical vector fields are those generated by infinitesimal
rigid motions of the shape, and horizontal vector fields form the orthogonal
complement to the vertical space, with respect to the power metric.
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Proposition 19.2 For d = 3, a vector s is horizontal if and only if
Mz) = 0. For d = 2, ¥s is horizontal if and only if ¥ is not a rigid
translation and u(vs) = 0.

The following result is very useful for the calculations.

Proposition 19.3 In order to compute the momentum map, it is enough
to find the Stokes extension of a finite number of boundary vector fields,
namely, those given by infinitesimal rigid motions & x ¥+ b.

Proof. Let b and ¥ denote the Stokes extensions of translations and
rotations, respectively. First we consider translations

u(U)(ﬁ,E)=I-;-/Ea(ﬁ)-ﬁdS:/Eg-a(ﬁ)-ﬁdS=Lﬁ~a(5)-r'idS,
and similarly for the rotations,
u(ﬁ(m,é‘):m-/zrxa(ﬁ)-ﬁds=[zw.(rxa(a)-ﬁ)ds
=/E(u'7xf)-a(ﬁ)-ﬁdS:/Et‘i-a(w)-ﬁdS.

Definition 19.5 Take a basis ¥y, k = 1,...,6 for the vertical vector fields,
that is, the three unit translations and the three unit infinitesimal rotations.
The 6 x 6 matriz I with entries (3;, ;) is called in fluid dynamics the resis-
tance matriz. In our language it corresponds to the locked inertia tensor.

Decompose 7 into its horizontal and vertical parts, 7 = o + 7. Write
¥ = 3 e Ty s0 that

Therefore,

which says that
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In the case d = 3, I is invertible and so

(5,%) = A®) = I (u(@)). (96)

Definition 19.6 The Stokes extension "7(5,13) associated to the rigid motion
(5,) (= A(9)) is called the counterflow of the velocity field 7.

In practice, we search for a counterflow with boundary condition (5, W)
whose Stokes resistance J((5,1))! equals u(#). Then we subtract:

T—Tg5q) s horizontal.

How about the curvature of the connection? There is a beautiful “mas-
ter formula” by Shapere and Wilczek [20], derived more rigorously in Ehlers’
thesis [7):

-7"2(17, 77) = A([ﬁh ’ ﬁh]), (97)

where [, | is the Lie bracket of vector fields.
Exercise 19.7 Prove the “master formula” (97).

Hint. Start with Cartan’s formula dw(u,, vo) = v-w(u) —u-w(v)—wlu, v] for
the exterior derivative of a 1-form on a manifold Q. Recall that in the right-
hand side, u and v are arbitrary extensions of vectors u,, v, € T,Q. Using
the solution of the Stokes equations, extend the tangent vector 7*, € TxQ
to a neighborhood of £. Since the stress tensor is divergence-free, the
Stokes extension of the horizontal projection #* at the shape T remains
horizontal for deformed shapes T(t). Hence the first two terms in Cartan’s
formula vanish. It remains to show that the Lie bracket of vector fields in
the infinite-dimensional manifold Q can be computed using the familiar Lie
bracket of vector fields®”. .

Exercise 19.8 What is needed from fluid mechanics in order to study mo-
tions due to self-reparametrizations of X (vector fields tangent to T)?

2TThis is so plausible that it could remain unnoticed, but proving this fact requires
some abstract thinking.
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Solution. In (97) the Lie bracket of tangential vector fields does not
require the Stokes extensions. So fluid mechanics enters (i) to obtain the
resistance matrix I, and (ii) to find total force and torque for a given tangen-
tial vector field. Figure 12 and 13 explain qualitatively the counterintuitive
fact that the motion of the organism is in the same direction as the waves
of contraction/expansion.

Figure 12. The tangential traveling wave mechanism. The black and white
areas represent regions of contraction and expansion on the cell’s outer
membrane. The cell travels in the same direction of the wave.

Figure 13. What happens to the test molecule? The wave train moves to
the left. The molecule tends to move more to the right than to the left.
Why? Explain qualitatively.

Exercise 19.9 (Lighthill’s Fugo [18]). Consider a spherical cell of radius
71 that draws an angle of 8¢ of its outer membrane towards one pole, shrinks
its radius to ra, extends its membrane towards the other pole for 6¢, then
expands again. The cell will translate further through the fluid during the
first leg than during the third, thereby producing a net translation after a
complete cycle. Quantify this.

Solution. Parametrize the sphere S by (¢,8), where ¢ is the azimuthal
coordinate. Let ur(¢) be the tangential deformation field in the direction of
the meridians. We need the following information from hydrodynamics: For
a sphere of radius a, the stress vector corresponding to a rigid translation
U is constant in the same direction of U at every point of the sphere (this
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property seems to hold uniquely for the sphere). Its value, incidentally, is
3u0U/2a.

Exercise 19.10 The corresponding total force is ¥ = 6rual, the famous
Stokes drag for the sphere.

Exercise 19.11 Show that the countervelocity associated with the defor-
mation field uT is simply the average over the sphere surface

! /s ursin ¢ dSs. (98)

4ma?

U=-

Continuing There is no translation associated with expansion and con-
traction legs of the swimming stroke, so we need only calculate the trans-
lation associated with the first and third legs of the stroke. Suppose that
the boundary vector fields during these legs are

ur = c—.

9¢

On each of the first and third legs the membrane shrinks/expands by
rid¢. Note that the durations in time are different:

At,' = 5¢’I‘,’ / C.
The countervelocities, in the direction of the z-axis, are in absolute

ue 1 cr
—_ inodS = —.
47mz/scsmqﬁ n

Therefore, the distance traveled on each leg 7 is in absolute value

cm d¢ri _ mogr

4 ¢ 4
so the distance traveled by the organism per stroke is
lig(’l‘z - 7‘1).
If the cell swims at a rate of f strokes per second, then the velocity is
]
700 try = 1), (%9)
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20 Swimming = Holonomy

A time periodic swimming stroke is given by a loop in shape space with
8(0) = s(T'). The swimmer can make progress because the horizontal distri-
bution is nonholonomic?8. After a complete swimming stroke, the swimmer
assumes its original shape but its position in the fluid has changed by a rigid
motion which is an element of the Euclidean group:

o(T) = g(T) - ¢(0). (100)

The quantity g(T'), which represents the net rotation and translation
due to the swimming stroke, is called the holonemy of the connection.,

In terms of the Stokes connection form, g(t) satisfies the differential
equation -

9 B)eg (8) = Ay (¢ (2)). (101)
Exercise 20.1 Prove this Sformula.

Hint. Here g(¢) is an arbitrary curve of located shapes with mq(t) = s(t).
There is a unique curve 9(t) in G such that 9(t)q(t) is the horizontal lift of
5(t). This means that .

(S o)a(t)) =o

Use the equivariance property of the connection to finish the proof, »

The solution to this differential equation is written formally as a path
ordered integral [20]

T
g9 = Pathexp <— /0 Ay (d'(8) dt) . (102)

Note that the path ordering is necessary because the group of Euclidean
motions is not Abelian.

28From the viewpoint of control theory, one would like the horizontal distributions to
be as far from integrable (in the Frobenius sense) as possible (otherwise the organism
would be constrained to a submanijfold of its environment!)
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Proposition 20.1 Ifa swimming stroke is given as

O =S+ Y a;(t)5, 0<t<T, (103)
J

where I is a base shape, {75} is a basis for the vector fields along &, and a;
the associated amplitude functions, then after one stroke the net translation
and rotation are given by

9=I+3 Fnn / i} am ()an () dt + O(jaf?). (104)
0

m<n

Here F is the curvature of the connection:
Fon = A([’LT,’_: ’ 'D?n])’ (105)

where [, ] is the Lie bracket of vector fields.

Remark 20.2 (i) The term 3, .. Fonn [T am(t)in(t) dt (which is quad-
ratic in the amplitude) is the first term in the ezpansion for the path-ordered
integral (102). (ii) In most cases of interest, symmetry of the wave patterns
implies that the motions of the cell are along a fized azis. In this case the
motion is independent of path in the sense that the trajectory can be broken
into infinitesimal pieces rearranged and reassembled into the same trajec-
tory. If, for ezample, the motion involves a rotation around one azis and
a translation along another, time averaging may give erroneous results. To
see where the problem occurs, consider the infinitesimal motion consisting
of a rotation about the z-azis and a translation along the z-azis; the net
infinitesimal motion then depends on the order in which these are taken,
When reconstructing the finite motion from infinitesimal ones, this “path
ordering” must be taken into account.

21 Nonspherical Self-Reparametrizing Cells

The difficulty in computing the swimming velocities for an arbitrary de-
formation of a shape is that solutions to the Stokes equations must be
developed with boundary conditions prescribed on that complicated shape.
It is possible, in principle, to carry out this program for cells whose average
shape is geometrically simple (prolate spheroidal, for example), and even




342 Momentum Maps and Geometric Phases

for the general ellipsoid, but the extremely complicated analysis limits the
usefulness of that method.

Calculations by Kurt Ehlers (not published before} will be presented
for the following restricted situation:

The physical shape T will be constant, but its parametrization q(t) will
be time dependent. For simplicity we will write Z(t) for q(t)(S?); One
would like to determine the importance of the particular shape, but with the
same “size” (volume or surface area) on the swimming performance.

From Exercise 19.8, if we restrict to tangential wave forms (those
thought to be responsible for the motions of Synechococcus), then the only
solutions to the Stokes equations are those necessary to compute the stress
tensor for streaming flow past the shape. This is a very significant sim-
plification, since the solutions for streaming flow past objects of various
geometries have been computed [9).

‘We present approximate formulae for the propulsive velocity of a sphe-
roidal cell that swims using travelling surface waves. We show that a prolate
spheroid swims faster along its axis of symmetry than a sphere or oblate
spheroid of the same “size” (volume or surface area). We also derive a
formula for the swimming velocity of an oblate spheroid that swims in a
direction perpendicular to its axis of symmetry.

21.1 Prolate and Oblate Spheroids

In our analysis we will use the solution, due to Happel-Brenner [9], of
Stokes equations with boundary conditions on a nearly spherical cell given
by (here 8 is the azimuthal coordinate)

7(8:6) = a(1 +¢f(4,6)). (106)

The Stokes extension is given as a power series in the nondimensional
parameter e.

Consider an ellipsoidal cell whose shape is defined by the equation

22 + y2 22

1. (107)

a? a?(1-e2

ol S e et T i LGN e < ] A
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If ¢ > 0, then the spheroid is oblate; if € < 0, the spheroid is prolate. To
first order in € the cell’s shape has polar coordinate (P and P, are Legendre
polynomials)

7(8) = a(l — ecos?d) = a (1 —€ (%Po(cos )+ %Pg(COSO))) . (108)

Now consider travelling waves on the outer membrane of the cell of the
form
8 — 6 + nsin(nd ~ wt). (109)

These can be envisioned as trains of waves of contractions and expansions
travelling down the cell body. The main result of our analysis is as follows.

Proposition 21.1 The swimming velocity of an oblate/prolate spheroid
with major and minor azis o and a — € is

U= %772nwa (1 - %e> +0(2,1%). (110)

Here 1) is the amplitude of the wave, n is the wave number, and w is the
Jrequency.

By normalizing the volume of the cell and amplitude of the oscillation, we
show that to first order in €, a prolate spheroid swims faster than an oblate
spheroid by a factor of nearly 2e.

21.2 Outline of the Calculation

Let (r,$,8) be spherical coordinates where 6 is the azimuthal coordinate.
Consider a spheroidal cell described by the coordinate

r=a (1 +eifk(¢,0)> , (111)

k=0
where the f(¢,0)’s are spherical harmonic functions that are O(1) with

respect to the dimensionless parameter €. In the special case of axial sym-
metry about the z-axis, r is independent of the coordinate ¢.

In view of Exercise 19.8, in order to find the counterflow, we need
(i) the total force associated to a tangential boundary condition I on the
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spheroid, and (ii) the Stokes drag corresponding to a rigid translation # of
the spheroid. '

Since the stress tensor is divergence free, instead of integrating over
the spheroidal surface (111) with € # 0, we integrate over the sphere cor-
responding to € = 0 (Exercise 18.3). However?® we need to find the corre-
sponding “virtual” velocities U and  at the sphere.

We use a Taylor expansion to determine an approximation (to arbitrary
order in €) to the velocity field on the sphere leading to the original velocity
field when its Stokes extension is restricted to the spheroid:

00 oo
v = Ze’v(’)’ p= Zeip(i)‘ (112)
=0 i=0

Substituting these into the Stokes equations and equating terms of like
power, one finds that for each i

Vvl = le“), V-vd =, (113)
"
The boundary conditions take the form v({® = 0 at 0o, and
o . .
Sevi =7 (114)
i=0

on the deformed spheroid.

Exercise 21.1 Use the implicit Junction theorem to obtain a recursive for-
mula for the boundary condition on the sphere,

v =1, (115)
and
; 1. &y (i=3)
vO=-3 9.0 (—;ﬂ—) , (116)
i=1

and setting r = a.

It is possible to solve these boundary value problems on the sphere.

29There is no free lunch.
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This is the crux of the calculation30. For the reader’s benefit, and to give
an idea of the algebraic complexity, we give Lamb’s general solution of the
Stokes equations in terms of solid spherical harmonics [15].

Proposition 21.2

V=3 Vémt Y. VX ()

m<-1 n<-2
1 T2 n 2043 Pn
7";2 [z(zn+1)v”"+ FEEETy Y (F) |-

Exercise 21.2

(1) Show thatp_; and é_; give rise to the rigid translations and rotations
of the sphere;

(i) Show all the other terms yield no net force or torque on any shape;

(iii) Show that only ¢_1 produces a change of volume.

Remark 21.3 We checked the code by computing the force, F,, required to
rigidly push the cell in the z direction with velocity U. We obtained

F, =6rxula (1 - %e + 0(62)) , (118)

which is in agreement with [9P!,

21.3 Results for Prolate and Oblate Spheroids

Recall that our ellipsoidal cell is defined by the equation
22 + 2 22

Z taggp b (119)

309Computer algebra is of great help. We can provide the details by e-mail to the
interested reader.

3174 is interesting to note that this linear approximation for the Stokes drag is never
farther than 6% in error from the exact solutions as computed by Payne and Pell. This
is true even in the extreme cases of the rod (e = —1) and the disk (e=1)19].
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If € > 0 then the spheroid is oblate, if ¢ < 0 the spheroid is prolate. To first
order in € the cell shape has polar coordinates

7(8) = a[l —ecos? ] =a [1 —€ (%Po(cose) + §P2(COS 0))] (120)

Consider travelling waves on the outer membrane of the cell,
0 — 0 + nsin(nf — wt). (121)

These can be envisioned as trains of waves of contractions and expansions
travelling down the cell body.

Proposition 21.3 To second order, the propulsive velocity is

T

U=8

’wa <1 - %e) + O(e%, ). (122)

Letting € = 0 in (122), we recover the result for a sphere of radius a

[5).

This method is not limited to problems with axial symmetry such as
that considered above. This is significant since many microorganisms are
not axially symmetric in shape. As an example, consider a spheroid whose
axis of symmetry is the z-axis that swims along the z-axis32. The cell is
described by the equation

22 4 o2 22
P a2(1—e€2 L (123)
The drag is
F, =6rulla (1 - -2-6 + 0(62)) . (124)

Proposition 21.4 If the travelling wave is now described by

¢ — ¢+ nsin(ng — wt), (125)
then the velocity of propulsion is
T o 3 2 4
= L ——¢|+0 . 126
U U nwa(l 32e> (e*,n%) (126)

32Some microorganisms are disk-like and swim edgewise.

L R R
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4 Comparisons of Swimming Velocities

ateresting to compare the swimming velocities of prolate spheroids,
oids of the same size. Equal volume and equal

quivalent conditions when calculating to first order, so we
will normalize all three spheroids so that their volumes and surface areas are
47q% and 4ma?, respectively. The sphere, prolate spheroid, and the oblate
spheroid have equatorial radii a, a(1— 1d), and a(1+ 1d), respectively, where
d = |¢ in (119). We have also normalized? the amplitude of oscillation
so that the amplitude of oscillation at the equator for all three spheroids
is an. Other physiological constraints on the size and elastic properties of
the membrane may be appropriate when applying the theory to a specific

organism. The normalized velocities are:

Itist

gurface area are

T 20
Uoblate = §n2nwa (1 - -2—46) ,

™
Usphere = "8‘

T 20
UP‘rolate = gﬂz'fw’a (l + '2'Z€> .

wims by a factor of nearly € faster than a

To first order, prolate spheroid s
d to an oblate spheroid.

sphere and nearly twice that compare
hococcus is thought to swim using a tan-

by (121). These organisms are 2um long
ties are on the order of

The cyanobacterium Synec

gential mechanism as described
and 1um in diameter. Observed swimming veloci
25mum/ sec. Reasonable parameters for such an organism are

n =30, n=.02pm,w = 800s 1.
y 5um/sec faster than the

If € = .2, then the prolate spheroid swims nearl
sphere, and 10um/sec faster than the oblate spheroid of the equivalent

sizes.

33Velocities for other choices of normalizations are easily approximated using (122).
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n 22 Final Remarks
[

The linear correction to Stokes law for
ingly accurate. It would be interestin
a prolate spheroid using prolate spheroidal harmonics to compare the ve,
ity with those predicted by our mo.

del. The Stokes function for streami
flow has been computed by Sampson [9] and the stress tensor can be ¢
culated.

prolate and oblate spheroids is am
g to compute the swimming velocity

Keller and Wu [10] presented an alternative method for investigati
the effect of shape on swimming performance at low Reynolds number. Th
method assumes a constant vector field on a “porous” prolate spheroid
shell surrounding the cell. A form for the velocity field was chosen such thy
solutions to the Stokes equations could be easily obtained and such that th
resulting flow agreed quantitatively with observations of actual swimmin
microorganisms (paramecia). A general porous cell model could be mad
by using the technique for asymmetrical cells together with this approach

It is possible that more complicated shapes and/or more complicated fAow:
could be treated in this way. Because the flow in this approach is steady
it may be possible to compute higher order terms as well.
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