
II. Shape space. Reduction by rotation. Central configurations. McGehee blow-

up.

A. Shape sphere. Pictures for the three-body problem. Shape space. The idea

of a Riemannian submersion. The symplectic quotient at zero angular momentum

as the (co)tangent bundle of shape space.

B. McGehee blow-up. Collision flow. Regularizing triple collision. Moeckel’s

bifurcation cartoons for the planar 3 body problem: REMAINS TO INCLUDE.

Sundman total collision implies zero ang mom theorem:: REMAINS TO INCLUDE

. Chenciner perspective (?? INCLUDE ??).

Lecture 2.

1. Shape space.

II. The shape space for the three body problem is the space whose points rep-

resent (oriented) congruence classes of triangles. By the SSS theorem of Euclid,

this shape space is three dimensional. Indeed, the three side lengths, r12, r23, r31

are functions on shape space and for the spatial three-body problem they are a

complete system of invariants: these three lengths uniquely determine the oriented

congruence class of the triangle. In the case of the planar three-body problem,

we will need one more variable corresponding to orientation. For unlike space, in

the plane triangles with vertices labelled have orientations. There will be precisely

two oriented congruence classes of planar triangles with given side lengths. For

example, we have two Lagrange triangles: two different equilateral triangles in the
1
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plane. A good orientation varialbe is the triangle’s signed area

∆ =
1
2

(q2 − q1) ∧ (q3 − q1).

We have seen that there are two basic functions for the N-body problem, the

(negative) potential U and the kinetic energy K. As far as the potential U is

concerned, the coordinates rij are perfect: the expression for U could not be simpler.

However, the expression for K in terms of the rij is horrible, and cannot even be

written down without first specifying the total angular momentum J . For K it is

better to use other variables. I have found it best to use variables adapted to K,

and re-express U in their terms.

Good shape variables for K are r, φ, θ where (φ, θ) are standard coordinates on

the sphere, arranged so that the usual equator is given by φ = 0. The variable r is

always
√
I so that it measures the overall size of the triangle. Thus

r2 = I =
1
m

(m1m2r
2
12 +m2m3r

2
23 +m3m1r

2
31)

is the total moment of inertia. The relation between r, φ, θ and our previous shape

functions rij ,∆ are:

r2 sin(φ) = ∆

and

r2ij =
mi +mj

2mimj
r2(1− γk(θ) cos(φ)),

with i, j, k any permutation of 1, 2, 3 and with

γk(θ) = cos(θ0k − θ).
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for three fixed angles θ0k whose values depend on the masses. The locus φ = 0

corresponds to the set of collinear triangles. On this collinar locus, the three angles

θ = θ0k indicate the locations of the three binary collisions.

Here is promised simple K in these coordinates.

(1) K =
1
2
{(ṙ2 +

r2

4
ds2sphere) +

J2

r2
}

where

ds2sphere = φ̇2 + cos2(φ)θ̇2,

the standard metric on the unit sphere, and where J is the total angular momentum.

PICTURE HERE. OF SHAPE SPHERE.

We will derive and generalize formula (1) in the next subsection.

1.1. Shape spaces, generally. Consider a Riemannian manifold Q on which a

Lie group G acts by isometries. Then the shape space for (Q,G) is, by definition,

the quotient space

S = Q/G.

We assume the G-action is ‘nice’ so that the quotient is a Hausdorff space. (Our

action is nice.) The shape space inherits a metric dS from Q’s distance function dQ

according to: the distance between two points s1, s2 ∈ S satisfies:

dS(s1, s2) = infq1,q2:π(q1)=s1,π(q2)=s2dQ(q1, q2).

where

π : Q→ Q/G = S

is the quotient map.
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Recall that a G-action is called “free” if gq = q implies that g = id.. It is called

proper if the map G × Q → Q is proper. If the G-action is free and proper then

shape space is a manifold, and the quotient map is a submersion. In the case of

free and proper actions, the metric dS comes from a Riemannian metric. and the

shape space metric comes from a Riemannian metric on S induced from that on Q.

This quotient Riemannian metric is succinctly described via the notion of a

Riemannian submersion Let Q,S be Riemannian manifolds and π : Q → S a

submersion.

Definition 1. The submersion π is called a Riemannian submersion if for each

q ∈ Q the restriction of dπq to ker(dπq)⊥ is a (linear) isometry onto Tπ(q)S.

Exercise 1. If Q alone is given a Riemannian structure, then a submersion π :

Q → S induces a unique Riemannian structure on S such that the map π is a

Riemannian submersion.

Example. When G acts freely and properly on the Riemannian metric space

Q by isometries, then the shape space Q/G inherits a unique Riemannian metric

making the quotient map into a Riemannian submersion. Moreover the infimums

for the formula for the distance dS are realized so the ‘inf’ can be replaced by a

‘min’.

Main Example. Let V = CD be the standard complex D-dimensional Hermitian

vector space and take Q = S2D−1 ⊂ V to be the unit sphere within V with its

induced metric. Take for G the group G = S1 of unit complex numbers acting on

V by complex scalar multiplication. This action is free if we delete the origin of V ,

and it maps the sphere S2D−1 ⊂ V . The shape space S2D−1/S1 is diffeomorphic
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to the complex projective space P(V ) = CPD−1 = V \ {0}/C∗. The quotient

map π : S2D−1 → CPD−1 is the Hopf fibration. Declaring this projection to be a

Riemannian submersion endows CPD−1 with its standard Fubini-Study metric. In

the special case D = 2, the quotient map is the standard Hopf fibration S3 → S2 =

CP1.

Proposition 1. If V = CD is a Hermitian vector space of complex dimension D

then V/S1 is isometric to the metric cone over CPD−1.

We best pause to recall the notions of ‘topological cone’ and ‘metric cone’ over a

Riemannian manifold X. The topological cone over X is obtained by forming the

product space [0,∞)×X of X with the ray [0,∞) and then crushing (identifying)

0 × X to a single point called the cone point. The metric structure on this cone

is that given by the metric dr2 + r2d2sX where r ≥ 0 parameterizes the ray, and

where ds2X is the Riemannian metric on X. (For the more general case where X is

a length space, see Gromov XXX for the definition of X’s metric cone.)

Exercise 2. Show that the cone over the unit sphere SN−1 ⊂ RN is RN .

Exercise 3. Find the radius r0 of the circle such that the standard positive cone

x2 + y2 − x2 = 0, z ≥ 0 is isometric to Cone(S1(r0)).

Proposition 2. Let V be a D Euclidean vector space and G a group of isometries

of V acting linearly on V , freely away from 0. Set X = SD−1 ⊂ E be the unit

sphere in E. Then V/G ∼= Cone(X/G) as metric spaces, where X/G is given the

shape space metric.

Proof of prop 2 Expressed in spherical coordinates, E has metric dr2+r2d2sX .

The G action, being by isometries, and leaving 0 fixed leaves the radial function
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r = dist(0, q) invariant. Thus the quotient metric is, formally, dr2 + r2d2sX/G,

which is the metric for the cone over X/G.

Prop 1 now follows immediately from prop 2 and the discussion above.

The case of propositon 1 is precisely that of the planar N-body problem. Iden-

tify R2 with C in the standard manner. Then rotation becomes complex scalar

multiplication by a unit complex number, while a homothety with scale factor k

becomes scalar multiplication by keiθ. The configuration space for the problem

is the Hermitian vector space CN , endowed with its mass metric. Dividing this

space by translations, we get CN/C isometric to the linear subspace CN−1 ⊂ CN

consisting of those configurations with center of mass at the origin, endowed with

the Hermitian induced metric. Take this CN−1 as our V in proposition 1. The

group of rotation acts on this V by scalar multiplication by unit modulus complex

numbers.

We have seen that the shape space for the planar N-body problem is the cone over

CPN−2.

When N = 3, we have CPN−2 = CP1 = S2(1/2)- the sphere of radius 1/2. The

1/2 comes about because in any great circle in S3 ⊂ C2 the points diametrically

opposed are antipodal: (z1, z2) and (−z1,−z2) are as far apart as they can get on

the sphere: they are distance π apart on the sphere, and along any great circle

connecting them. But because −1 = exp(iπ) these two antipodal points represent

the same point in CP1. Consequently 1/2 an arc of a great circle in S3 projects to

a full great circle – once around CP1. This 1/2 is the 1/2 of CP1 = S2(1/2). The

term 1
rds

2
sphere of formula 1 is the standard metric on S2(1/2). Hence, if J = 0 so
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that the term J2/r2 were to vanish, the expression there is the expression for the

shape space metric for the planar 3-body problem.

The cone point corresponds to triple collision. The triple collision point – the

origin in center of mass coordinates – is the only point of V = C2 where where the

S1 action fails to be free.

2. Reduction at zero momentum. Notion of Riemannian submersion

We now explain the appearance of J in the metric formula 1.

We return to generalities: G acting on a Riemannian Q by isometries. We have

the lifted action of G on TQ and on T ∗Q. We recall the formula for the momentum

map for this lifted G action on T ∗Q:

J : T ∗Q→ g∗.

by

J(q, p)(ξ) = p(σq(ξ))

where we write

σq : g→ TqQ

for the infinitesimal action of the Lie algebra: namely:

σq(ξ) =
d

dt
|t=0exp(tξ)q

For those familiar with Abraham-Marsden-Ratiu notation, they write ξQ(q) for

σq(ξ). This map σq is a linear map for each q ∈ Q. Taking duals we have

σ∗q : T ∗qQ→ g∗.

We can rewrite the formula for the momentum map then according to:
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Proposition 3. The momentum map for the G action on T ∗Q is the map J :

T ∗Q→ g∗ given by J(q, p) = σ∗q (p).

Now, the tangent space at q to the G-orbit through q is im(σq). It recall the

basic linear algebraic fact that the kernel of the transpose (or dual) of a linear map

L equals the orthogonal complement (or annihilator) of its image that :

J(q, p) = 0 ⇐⇒ p ⊥ G orbit through q.

Let us use the given Riemannian metric on Q to identify TQ and T ∗Q. (This

identification is the Legendre transformation associated to any Lagrangian K +U ,

K the kinetic energy for the given metric.) Let us also fix an inner product on } –

the Killing metric if that choice is available. Then both TqQ and g are inner product

spaces. The transpose of the infinitesimal generator σq becomes the tangent version

of the momentum map:

J(q, v) = σtq(v).

Moreover, by the linear algebra remark above:

ker(dπ(q))⊥ = {v ∈ TqQ : J(q, v) = 0}.

Now observe that by restriction we have a linear isomorphism dπq : ker(dπ(q))⊥ →

Tπ(q)S and that the shape space metric on S was defined by declaring this isomor-

phism to be an isometry. We have shown: The metric on those phase space points

for which J = 0 coincides, under projection, with the shape space metric.

Orthogonal to those velocities v with J(q, v) = 0 we have the group directions,

consisting of velocities of the form v = σq(ξ) for some ξ ∈ g. The kinetic energy of
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such velocities is given by:

〈σq(ξ), σq(ξ)〉q = 〈ξ, σtqσq(ξ)〉g.

Definition 2. The moment of inertia tensor at q ∈ Q is the symmetric non-

negative form σtqσq on g.

So, we have pointwise linear isomorphisms TqQ ∼= TsS⊕g under which the metric

becomes:

ds2Q(q) ∼= ds2S ⊕ Iq.

Said in terms of subspaces of TqQ this splitting isomorphism is the horizontal-

vertical splitting:

TqQ = ker(σtq)⊕ Im(σq

with consequent orthogonal projections TqQ→ ker(σtq), Im(σq).

Exercise 4. Verify that the two terms of v = (v − σqAqv) + σqAqv with

Aq = I−1
q σtq : TqQ→ g

implement the orthogonal projections of the horizontal-vertical splitting. Use this

splitting to prove:

Theorem 1. The kinetic energy is given by

K(q, v) =
1
2
{〈dπq(v), dπq(v)〉S + 〈J, I(q)−1J〉g}

where J = J(q, v) is the value of the momentum map on (q, v)

and where we have assumed that I(q) is invertible
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Exercise 5. In the case of the planar N-body problem, with G = S1 and so g = R

we have that the inertial tensor is the moment of inertia as defined earlier: I =

Σmi|qi|2 = 1
mΣmimjr

2
ij.

Combining this exercise with theorem 1 establishes formula 1.

2.1. Principal bundles. An action is called “locally free” if the kernel of σq is

zero for all q. This asserts that the isotropy groups are everywhere discrete.

Exercise 6. An action is locally free if and only if Iq is everywhere positive definite,

and hence invertible.

Now, free implies locally free. Let us suppose that the G action on Q is free.

Then Q → S = Q/G is a principal G-bundle, and the spaces ker(dπq)⊥ are hori-

zontal spaces for a connection on this bundle. We call this connection the “natural

connection” or the “mechanical connection”.

Exercise 7. The connection one-form A ∈ Ω1(Q, g) for the natural mechanical

connection is given by Aq(v) = I−1
q J(q, v), v ∈ TqQ.

This language allows us to relate mechanical concepts such as angular momen-

tum, and moment of inertia to the gauge theoretic concepts of a connection, its

horizontal space, and its connection one-form.

2.2. Sundman identity 1. The generalization to the N-body problem in 2-dimensions

is

K =
1
2
{ṙ2 + r2Kshape + r−2J}

This splitting is sometimes called the Saari decomposition. Don Saari observed

that by splitting velocities into three parts: homothety (ṙ), rotatiaon, and what is
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left, we get this decomposition. Some algebra now yields:

2IK − (rṙ)2 − |J |2 = r4Kshape

The inequality

2IK − (rṙ)2 − |J |2 ≥ 0

is called Sundman’s inequality.

Exercise 8. In the N-body case in 3-dimensional space, we have the Legendre

transformation pa = maq̇a, q̇a ∈ R3, The angular momentum is then J = Σmaqa×

q̇a. Compute, using basic vector identities, that the tangent vector q̇ = (q̇1, . . . , q̇N )

is orthogonal (rel. to the mass metric) to all rotations through q if and only if

J(q, q̇) = 0.

Recall symplectic reduction at 0. As a manifold, this reduced space is the subquo-

tient J−1(0)/G of T ∗Q. As a symplectic manifold, its symplectic form is obtained

by noting that J−1(0) is a co-isotropic submanifold of the symplectic manifold

(T ∗Q,ωQ), and that the G-orbits within this submanifold are the integral leaves of

the kernel of ωQ restricted to J−1(0).

Proposition 4. The symplectic reduced space of T ∗Q at 0 by the free lifted action

of G is T ∗S where S = Q/G is the shape space for Q.

TIME PERMITTING: What the reduced space looks like a non-zero values of

the momentum.

Exercise 9. . In the case of Q = RdN , the N-body configurartion space, with its

mass metric, and for G = SO(d) acting ‘diagonally’ the momentum map is given
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by

J(q, p) = Σqa ∧ pa ∈ Λ2Rd = so(d)∗

.

3. Metric and shape metric. Planar three-body problem. Explicit

formulae via Jacobi vectors.

After going to center of mass frame we have Q = C2. Variables which diagonalize

the moment of inertia are the Jacobi vectors. [DESCRIBE]

Let us think of C2 = Cone(S3(1)). The rotation group acts on the S3(1) part.

Forming the metric quotient we find:

C2/S1 = Cone(S2(1/2))

since

S3(1)/S1 = S2(1/2)

Write r for the cone generator variable – the distance from triple collision. We

have r2 = I. Let φ, θ be coordinates on the two-sphere.

Then

K =
1
2

(ṙ)2 + r2(φ̇2 + cos2 φθ̇2) +
1
r2
J2

while

U =
1
r
Ũ(φ, θ).

If we now assume a Riemannian metric on Q, and use it to identify TQ with

T ∗Q we have that J(q, p) = 0 if and only if ...

Associated to any foliation of a manifold Q we have, in the cotangent bundle of

Q, the space of all covectors which annihilate vectors tangent to the leaves. Let us
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denote this space by H∗Q ⊂ T ∗Q. It is a co-isotropic submanifold with kernel at

(q, p) the set of vectors (v, 0) with v tangent to the leaf through q. Consequently,

if the leaf space Q/F is a nice manifold, then the “reduced space” H∗Q/ker is

canonically isomorphic to the cotangent bundle of the leaf space S.

In case of Riemannian submersion, the fibers are the leaves of a foliation and S

itself is the leaf space.

4. Sundman estimates ? HERE? .

5. McGehee blow-up

Triple collision is an essential singularity for the three-body problem. This sin-

gularity can be blown up to a sphere by rescaling variables. If we slow down time

on approach to collision, so that instead of taking a finite amount of time to reach

triple collision, it takes an infinite amount of time, then the resulting equations

are analytic all the way to triple collision. The surprising result is a flow on a

7-manifold, which has the remnants of triple collision as an invariant 6-dimensional

submanifold called the “collision manifold” on which the flow is gradient-like. The

flow on this collision manifold governs near-triple collision dynamics.

This tool has become a central tool in mathematical celestial mechanics. since

it was introduced by Dick McGehee in 1973.

Change variables in the planar three-body problem from (q, v) ∈ TQ = R8 to

r =
√
I(q)

s = q/r ∈ S(Q) = S3

z =
√
rv
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(The new variables (r, s, z) still move about in an 8-dimensional manifold, z varying

in the 4-dimensional space Q.) Change time by When the ODEs are rewritten in

these variables, one finds that they contain a common singular factor of r−3/2.

Consequently if we redefine time to a new parameter τ according to

d

dτ
= r3/2

d

dt

we get a system of ODEs which is analytic all the way down to triple collision. This

system is

r′ = νr

s′ = z =
1
2
νs

z′ = ∇U(s) +
1
2
νz

where

ν = 〈z, s〉

Blow-up replaces triple collision r = 0 with a three- sphere. The variety r = 0 is

an invariant submanifold for the blown-up equations. Topologically, we have added

It is called the collision manifold.

equations now are analytic all the way to r = 0.

Exercise 10. Verify that the McGehee substitutions yield the claimed equations.

Exercise 11. Generalize the McGehee substitutions and equations to the d-dimensional

N-body problem.

Commentary We said that triple collisions in the three-body problem acts

like an essential singularity for the problem. Binary collisions do not. If bodies 1

and 2 are colliding, with 3 a finite distance away, and if we apply a Levi-Civita
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transformation to the difference vector q1 − q2, reparameterizing time according

to Levi-Civita, and leaving q3 alone, we compute that the resulting dynamics is

analytic through the collision. We have analytically continued solutions through

binary collision in a way that depends analytically on initial conditions. It is a

theorem that such an analytic continuation through triple collision is impossible.

(R. Easton; others.)

6. Sundman estimates and theorem

Theorem 2. (N =3) If a solution has a triple collision then its total angular

momentum J is zero.

2IK ≥ ‖J‖2.

Refined Sundman estimate: Let Ksh denote the quadratic form associated to

shape space. Then

2IK − (rṙ)2 − |J |2 ≥ r2Ksh

by in a manner which also depends analytically on initial conditions. A central

problem, solved by Sundman for N = 3, was to understand the asymptotics of

approach to triple collision. The solution to this problem was made much simpler,

and became a powerful tool, in the hands of McGehee. He blew-up triple collision

into a sphere, and slowed down time so that it takes forever to reach triple colli-

sion. His methods are central to modern approaches in celestial mechanics and are

intimately connected to shape space.


