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ABSTRACT

This paper extends previous results concerning the structure of the
reduced phase space for a lifted group action on a cotangent bundle. The
main difference between this and earlier papers is that we do not assume
that the group action is free. It is shown that if certain regqularity
conditions and a dimension count hold then the reduced space is itself a
cotangent bundie. In general this cotangent bundle does not have the
canonical symplectic structure but has an added "magnetic term". Many

examples are presented in the concluding section.

1980 Subject Classification: 58F05, 53C99.
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Introduction

The purpose of this paper is to prove a generalization of the theorem;
of Smale [1970], Satzer [1977], Marsden (Abraham and Marsden [1978, Theorems
4.3.3 and 4.5.6] and Marsden [1981, Lect. 4]) and Kummer [1981]. These
papers show that the reduced space in the sense of Marsden and Weinstein
[1974]; for the free action of a Lie Group G on Q 1lifted to T*Q is
embedded as a subbundle of T*(Q/Gu), with equality iff Q},= qlu' Here
HE ﬁp* is the value at which the reduced manifold is constructed, and Gu
is the isotropy group for the coadjoint action. In this paper we show

that a similar result holds in the non-free case with the analog of zl =q¢u

being

. s = o4t » . H

d1mn} d1ma;u 2(_d1mg(Q-d1m0;,Q) (D)
where dim 070 is the dimension of the isotropy of the G action on

Q, and dim 033 is the isotropy dimension for the action of Gu on Q,
with.these diﬁensioﬁs assumed constant on relevant submanifolds. This situation
occurs for Jacobi's "elimination of the node" i.e. the standard action

of SO0(3) on T:*(IRs\&O}). We show that the result applies to SO(n)

acting on T*IRn and also includes a result of Planchart [1982] concern-

ing the case in which Q is a symmetric space. We shall also discuss

the 'magnetic terms' that are studied in Kummer [1981] and their inter-

pretation as the u-component of the curvature of a connection.

This paper deals only with finite dimensional manifolds, although

many of the results are valid in the infinite dimensional case. Probably



the right abstract infinite dimensional analog of the finite dimensional

statement (D) is that
' 1
o/ 9y,

is a Lagrangian embedding. This statement will be clarified in the

appendix.
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§1. Basic Assumptions _and Construction

The lifted G action has an Ad* equivariant momentum map J:T*Q *’%L*
given by

3 ;

J(aq)(g) uq(EQ(Q)) for £ ed (J)

where EQ is the vector field on Q induced by the action:
£qla) = 3% (expt ©) "Alg=q = 94(8)
Then the reduced phase space at y esef
P, =97 (/e

Abraham and Marsden [1978] and Kummer [1981] implicitly assume that
t(J'](ﬁ)) = Q, where t1:T*Q - Q is the canonical projection, and construct

an embedd1ng P > T* (Q/G ). The difference here is that we only assume that

e,

w(J” ](u)) is a. suhman1fo]d of Q, whibh we will call Q" throughout. A

smooth map P '»-T*(Q“/G ) is constructed and under the condition (D) o
the 1ntroduct1on this is a diffeomorphism. It reduces to the previous

constructions when Q = Q¥, ‘which occurs when the action on Q

is locally free. (see remark at the end of sectian).

The two-form on T*(Q“/Gp) needed to make the map symplectic is given
in formula (5.1), and is seen to contain a 'magnetic term' as in previous
papers. As Kummer [1981] does, we interpret (§6) this term as the yu-com-
ponent of the 'curvature' of a 'connection‘on Q" - Q“/Gu- This component

is a standard two-form on Q“/Gu precisely because u is Gp invariant.

To aid intuition in what follows, the reader may wish to occasionally
refer to the motivating example (§7), G = SO(3) actingon Q = IR3, which,

though very simple, contains many elements of the general theory.



We will make the following

Assumptions

(A1) 1 is a weakly regular value for J. That is, J'](u) is a

submanifold of T°Q with T () = Ker TJ_. ©:T*Q > Q has constant

rank when restricted to J-](p) and Q¥ = T(J-](p)) is a submanifold of

Q. G}1 acts properly on J-](p), hence on Q¥ and QM » Q“/Gu is a

submersion. In particular Q“/(:‘a}1 is_a manifold. (A1l manifolds assumed

without poundary).

The basic ingredient in constructing the map P T (Q“/G ) is, as

in previous papers, the assumption

(A2) There is a smooth G equivariant one- form, au’ with values in

J7 (u)

(The difference here is that Q" may not be all of Q, so o, has

domain Q" instead of Q.)

Remark
In examples,. au is usually not hard to compute (see examples in this
paper, in Abraham and Marsden [1978] and Kummer [1981]). One expects,
by Marsden [1978, Theorem 4.5.6] and the interpretation of au as the
u-component of a connection (§6) that in reasonable cases, e.g. if J'](u) > Pu

is a fibre bundle, au exists.

Outline of Construction

Using o a Gu equivariant map w’J-](u) + Ker ¥ is constructed
in §2. Here J¥ is the Ad* equivariant momentum map for the G action

*
on TQ¥, defined by formula (J), except is replaced by Q“, and o by

%



There is a natural map fiker % > T°(0"/6,) making T*(,Q“/Gu)z
(Ker J”)/Gﬂ, that is, f 1is a submersion with fibres the G, orbits.
For completeness, this is shown in the appendix.

Since ¢ is equivariant, we have the commutative diagram

J“](u) - Ker JH
’ITJ/ lf
u
] *
P}l —=>T (Q“/Gp)
Figure 1

which defines the desired map ¥, which is continuous by the openness of
the projections. As is always the case with equivariant mappings,

is one-to-one or onto precisely when the quotient map V. is.

Remarks Concerning Assumptions

(A1): In practice, it is easier to check that Q" is a submanifold of Q,
than to check the statements in (A1) concerning J, so we consider the

alternative assumption

(A1') Q" is a submanifold of Q satisfying

dim Q¥ = dim Q - (dim lq - dimg};) (D1)

and Q“-»Q“/Gu is a submersion.

This is useful because of the next:

Lemma. Suppose (A2) and (A3) hold. Then (A1') holds iff (A1) holds.




The proof of this lemma relies on machinery developed over the next

three sections, so we relegate its proof to the appendix.

It is important to note, especially for computation, that
Q" = {q EQ:aq C Ker u}

This is easy to see: q €Q¥ iff 3o EJ;](U), that is an % eT;Q

satisfying

(aq, oqi) = (U8 VE € 0}

On the one hand, if there is such an % then 7q = Ker % C Ker u. On
the other hand, if g_q C Ker u then the above formula defines a linear
functional aq on TqG-q, which we can then extend to all of TqQ (say
by letting it be 0 on a complementary subspace to TqG-q), thus getting
an o € J;](u).

This simple expression has the immediate consequence that if ere‘e

denotes those elements of Q at which the action is locally free (a;_q = 0)

then

eree C Qu for all up € "j—*'

The previous theorems all dealt with the case eree =Q, i.e. Q=QN
Note also that if there are any trivial isotropy groups, %q = 0, then

there is no hope of Q providing a new example, i.e. one not covered by

then Q must contain q's

7 eree’
with aq # 0, on the other hand, it contains all q's with (,}q = 0, hence

the Q... = Q cases, for if Q"

the constancy of dimension assumtion (A3) would not hold.



(A2); In examples, o, is usually not hard to compute. And in a large
class of examples, one can show that (A2) is satisfied as follows. If
Gu is compact and G has a bi-invariant metric (in particular, if G

is compact) then (A2) is implied by:

(A2'): There is a Gu equivariant one form &u on QY with values in

() (uly ) €T

If in addition Gu acts freely on QY, then (A2'), and hence (A2),
automatically holds, either by a theorem in Abraham and Marsden [1978,
Theorem 4.5.6] or by Kummer's interpretation of &u as the yu-component of
a Gu connection on QY - Q“/Gu.

To extend the &u of (A2') to an au of (A2) put a metric on Q
such that Gu acts by isometries and such that cq(q}p) 1 oq(Q}ul) for

q € Qu. Any v € TqQ can be written uniquely as vT + vl vT € TqQ and.

vl 1 TqQ“. One checks that

a,(a)(v) = & (a)~'

defines such an extension.

(A3): Throughout this paper GX will mean the isotropy subgroup of G at
x € X relative to the G action on X, and Gg = GuﬂGx will denote
the isotropy for the same action restricted to Gp. The corresponding
) i . u ]
Lie algebras will be denoted Cﬂx and q}x' Note that whenever F:X » Y

is a G-equivariant map, then Gx E;GF(x)’ and that if F 1is one-to-one,

then Gx = GF(x)’ Using (A3) and (A2) we can prove the important:



Isotropy Lemma.

%o = O

whenever o EJ'](u), where q = 1(0).

Proof. By the equivariance of J and T, GaSGu’ Gq. Hence

K= - =g"
G, Gy.n-Gq G‘t (1)

On the other hand, %, is G equivariant so Gu C Gg ( ) & c G11 Thus

=G and so the resu]t follows from constancy of the d1men151ons

o (q)
of G |



§2. The construction of ¥ :J'](ﬁ) + Ker JH

If we subtract o , we get a map ¢:J‘](p) + Ker w’J, where
) L q
KerduJ = J ](0) n'r](Q”). To be explicit, let

¢(0Lq) =0 - au(.Cl)

Note that ¢ is a fibre-preserving (in fact fibre-affine) diffeomorphism,

(its inverse is adding o). It is equivariant because a, is.

We then have the diagram in Figure 2.

I —2s ker ey T Q— T s ¥

Q}J
\ i
1

*
-
Ker JH <5 T QM

™

Grmmm g

Figure 2

Here r:Q<- Qp is the inclusion. The dotted 1ine means that we are going
to show that i = r*|Ker uJ actually maps into Ker J". This will be done
in the proof of Theorem 1. Assuming this, we see that r is Gu equi-
variant (Q¥ is Gu invariant) hence r*, i and finally y = jo¢ are
equivariant.

We are interested in when Yy, the induced base map, is a diffeomor-
phism, for which we'll want to know when y is. Since ¢ is a diffeomorphism,
the only obstruction to ¢ = ie¢ being a diffeomorphism is i, a vector
bundle map over QY. This reduces the diffeomorphism questions to linear

algebra and dimension counting, as expressed in:
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Theorem 1. Let (A1), (A2) and (A3) hold and i be as just defined. Then i

(i) maps into Ker JH

(ii) is onto iff for all q € @, T8 = Tun N T,(6q)

Q

(iii) 1is one-to-one iff for all q € QY, TG TqQu - T

Also (iv) The dimension count (D1) of &1 holds.

———

(v) i 1is a diffeomorphism iff condition (D) in the introduction

holds.

We shall prove this in §4 below.

§3. The Main Result

Theorem 2. Let (A1), (A2) and (A3) hold. Then EEPu > T*Q“/Gu is a continuous
map onto a subbundle of T*(_Q-“/Gu). (1) and (ii:0f Theorem 1 hold with ¥

in place of i, and (v) also holds if 'diffeomorphism' is replaced by

'homeomorphism‘.

Assume J'](p) > Pu is a fibre bundie, and condition (D) holds. Then

P is a diffeomorphism.

Remark. If the isotropy subgroups, Ga, for the Gu action on J'](u)
are all conjugate (in Gu) J_](u) - P}1 is automatically a fibre bundle (with
fibre Gﬁ/Ga)’

Proof of Theorem 2: As mentioned immediately below Figure 1, E'is one-to-

one or onto exactly when ¢ 1is, so, according to the discussion immediately
preceding the statement of Theorem 1, exactly when i dis. If y is a

homeomorphism so is ¥, by openness of the projections in Figure 1.
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To see that im y 1is a subbundle, note ¢'] of Figure 2, and m of
Figure 1, are onto, and ﬁbnp9¢°] = foi. So imy = imfoi and the latter
is a subbundle because f ‘and 1 are constant rank vector bundle morphisms.
If J-](p) - Pu is a fibre bundle, one can use local sections to
show '$4 is smooth. If (D) holds (¢, ¥) 1is then a smooth bundle homeomor-
phism, so Ker J¥ & T*(Q”(Gu) is also fibre hundle and one can now use

local sections of this bundle to show E"] is smooth. m

§4, Proof of Theorem 1

(i) - (i1i) follow from a lemma from linear algebra. Set

= . = u = hd =

for q €Q". Note V3 CVy NV, (since Q¥ is G -invariant). For
UCW subspaces ¢f V, the W annihilator of U will be denoted
ann,, U= {a € w*:a(u) = 0}, .

: = T N .
Then Ker Jq anan], Ker Jq annv2 V3, and fibre-wise i 1is the

composition

ann.V.c—s V* restrict V*
Vi 2

Lemma. This map, which we will also call i, maps_onto Annv2 V] N V2 C annV2 VB.

Hence it is onto ann V3 iff V3 = V] F\VZ. It is one-to-one iff V., + V. = V.

1 2

v,
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Proof. First note that if o annihilates V;, then olV, annihilates
V. NV,. Hence i maps into ann, (V, NV,). To see it is onto, find a
1 2 — V2 1 2 —_—
subspace W such that V, CW, VNV, =WnV, and W+ V, = V. (This
is easy to do in the finite dimensional case.) Then, for a € ann V] N V2,

v
2
set B(_v2 + W) = a(vz). This is well defined, for if Vo + W = vé + w'
then Vo = vé =W - w} € V2 NW= V] N VZ' Hence a(v2 - vé) =0 or ‘
a(vz) = a(vé). Note B annihilates W, hence ’M], and iB = BIV2 = a.
To prove the remark concerning one-to-oneness, note that for o € anny, V],

io = alV, =0 iff o annihilates V; + V,. That is Ker i = 0 iff V; +V, =V

2° 2

Making the substitutions above we see that this Temma is precisely (i),
(i1), (iii).

(iv) - (v): The following notation will be used: if S is a
submanifold of T*Q, a €S, then we set

*
=sNT
Sq qQ

and S =35 rwr']

» (a,).

Also, let T;S = vertical tangent space to S at a = Ker T(Trs)a =

Tas N T;(T*Q) where TfT*Q +1Q as usual, and let

= 07 ()

and 9= 7137 (0).

For the various dimensions we will use
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g = dim ﬁ? 9 =-dim€}q, gg = dim q}g, and  9, = dim eﬂa

Note that 9, = 92 from the isotropy lemma. We will need the following

facts:

Facts

(a) TTg(TaJ_](p)) = TqQ’1 (independent of q)
(b) dim 37 () = 20 - (g - g ).

V. "] ~ =Y ~
c I - I K r - i 1 - -

q.
Proofs. (a) Since T”:J'](p) +>Q , we know

Ttg(,TaJ“ W) ¢ 10" (1)

1

, so Ta Q" cT I ()
Q* Mo au(q)

(TqQ“) = TqQ“, from which it follows that (a) is satisfied

Now ov}-]i:Q}1 > J'](ﬁ) satisfies r”ouﬂ =]

and TtH . oTo
o () ¥
for o = ap(q). For general o the result follows from that for au(q)

using the assumption of constant rank of T, the fact that TTITJ-](U) =

TtH, and the inclusion (I).
(b) For any momentum map J, on a symplectic manifald (P,w),

TJa is the transpose of the composition

Eb Oa(g) - w(,oa(.E),-)
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where Qx:Q?'* TyP 1is the map induced by the G action. This follows

directly from the definitions. Thus

Ker Td = ot
a a
L in the sense of the symplectic form, «, so dim Ker TJa = dim(Td(T*Q)) -
dim im o, = 2n j (g-ga).
(c) ¢:J'](u) -+ Ker 11J is a fibre preserving diffeomorphism, hence
induces the first isomorphism.
The second is a result of the fact that Ker uJ is a vector sub-bundle

of T*MQ' This is seen by considering J as a vector bundle morphism of
Q

vector bundles over QY

T 0 M ¥
J.TQ]JQ —Q X 7
It has constant rank g—gq since im Jq = %ﬁﬁ (L is the dua]ify sense)
as is clear from the definition (J). Hence Ker uJ is a vector subbundle
: Q
of fibre dimension dim Ker Jq = dim T;Q ~ dim im qq =n - (g—gq). Finally
for any vector bundle, a fibre fs cénonicaT]y isomorphic to a vertical

tangent space, at any point in that fibre.

(iv). Putting these results together we have:

dim Q¥ = dim Tun

dim im Ttg (by (a))

. -1 . H
dim T J "(u) - dim Ker T,

n

2n - {g-gy) - (n-(g-g)) (by (b) and (c))

n - (gq - ga)

as desired.



.15

(v) Since 1i 1is a vector bundle map over Qp, it is a diffeomorphism
iff it is one-to-one and onto. From the Remark concerning isotropy (81)

g = g! =dim Gﬁ NG , in this case.

“a q q’
Recall Tqu-q_gZTqG-q F\TQQ“, always, since Q" is Gu invariant.
So (ii) translates to:
“i is onto iff g, - gg = dim TqG~q F\Tun-"
Similarly (iii) may be written:
“i 1is one-to-one iff [g-gq] + [n - (gq—ga)] - dim TqG-q anQu =n."

Putting these results together we get

i s one-to- d onto iff (g-g ) + (n-(g -g )) - (g -g") = n"
i 1is one-to-one and onto iff (g gq) (n (gq ga)) (9u gq) n

after some algebra and using. g = gg this becomes

- _u
9-9, Z(Qq gq)

which is (D).
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*
§5. The Symplectic Structure on T_(Q“/Gu)

A form on T*(Q“/Gu) 1s now found which makes our map ¥ symplectic.
We have the following commutative diagram, with canonical one-forms

written next to their cotangent bundles where throughout this section all

vector bundles except T*(Q“/Gu) are considered as vector bundles over QY.

- ¢
J ](¢) — Ker J €—un-—0> T*Q;e

\ H/n
T (Q“/G e » O/6

Figure 3

The following notation will be used: Let N C M be manifolds and v
a form on either N or M with values in the exterior algebra bundle
* *
over M. e.g. if vy 1is a one-form, we mean either a section of TNM or T M.

Then yIN will mean j™y:N ~T°N where j is the inclusion Ne» M.

Theorem 3. Let ay be as in (A2).

(a) There is a unique two-form da on Q”/Gu with n“*ﬁ&;'= dauIQ“.
(b) Set:

= wh - 'E (5.1)
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*
where w} = —deﬁ is the canonical two-form on T (Q“/Gu). let w,  denote

the canonical symplectic form on Pu' Then EE(Pu,wu) -+ (T*Q“/Gu, wﬁ) is

symplectic.

Remarks. Tg*daﬁ is known as a magnetic term.

Note that by dOL]Ll we mean the standard two-form d(a“IQ”) on QM.

Proof of Theorem 3. (b): We will assume (a). It will be proved below.

We wish to show E*wu = w . Recall w 1is defined by 7*w = wru'](u)
1 H u Loww

where « = -d6 is the canonical symplectic form on T Q. Since ™ is

a submersion, n: is injective on forms. Also foy = Ebnu. So it is

equivalent to show:
VR = wh ™ () (5.2)

We will show

(i) f*eﬁ=9“fKer JH
(1) 1*(e"[Kker J¥) = olKer J
(i11) ¢™(elker J) = 6 —-vr:dprT](p)
From this it follows that
* ok oy o Kok ok oy % -1
vfe;=¢ifo =0 Tpaurd (n)
Hence

VRl = -d(y ) =u s 'Tzdauld-] (1) (5.3)
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Now fﬁof = ot?[Ker I, so

f*’t” do, = T *"do
L H

= T”*dau (from (a))
Since tHoy = TPJ_](H) we get

w*f*TﬁaE; = wfrp*dau =rfqaurq'](u) .

13

1su5¥racting this from (5.3) gives (5.2), the desired result.

Proofs of (i) - (iii).

It is shown in the appendix that f may be defined by
(fla), mV = (a,v)

where T = 7", and ( , ) denotes the vector-covector pairing on the appro-
priate space. In the following X denotes a vector tangent to the appropriate

space::
(1): (Fe) () (x)

e;j(,f(.a) ) (FaX)

(f(a), THFuX )

(fla), (,;lTp*T‘;X))(Tﬁéf = "u”u)

Ca, TX)

W

oH(a) (X).
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I

(i1): (i%6")(a)(X) = 0M(in) (i4X)

(r*a, thiX)

(ra 1% (since tHoi = 1)
= (o, reTeX)

= (a, 14X} (since rot = t when restricted to Ker 11J)

Q

6(a)(X).

(151): ¢ () (X) = 8,(0a)a,X)

(o, TydeX)

={¢a 14X} (since 1o¢ = T when restricted to J-](p))
=(a-0, T X)
(oc-q11 Tx

= (o, TeK) - (ap, T,.X)

o) (X) - o (X)

(a) We will use [q] to denote 7%(q) = G}1 orbit through gq, and 7 to

denote n“*. Since 7M*is injective oniforms, uniqueness is clear.

Existence of. &&;? Set

EE;(LqJ)(nqx, AN dau(X,Y) (5.4)

We need only check that this is well defined, for clearly then w“*ﬁ&;'= dau.
Since T is onto for each q, H&; is a form on Q“/Gu as long as our

definition is:



(i) Independent of Mg in the sense that if an = ¢ X' and

q
%Y='%Y' then d%JQNXJ)=CMJQHXKYW-

(i) Independent of q, in the sense that if q' = gq, g€ G,

X' = 1 X, and Y' = 1Y then do (q)(X,Y) =d X',Y').
T T nd m T ap(Q)( ) au(QQ)( )

These are precisely the statements that, in the terminology of

Kobayashi-Nomizu [19631], do¢}1 is a 'tensorial form'. That is,

(i) do (a) (K,Y) = 0

If either an or ndY. are 0.

i ~T%
i do, =d
(ii') 9 do = da

20

To see that (i') implies (i), suppose, X,X'; Y,Y' are as in the state-

ment of (i) and that (i') holds. Then, since nq(x-x') = 0 we have

duﬁ(q)(X-X',Y) =0 or dap(q)(X,Y) = dap(X',Y). Likewise dau(q)(X',Y)
da (X',Y").
au( ) |

Then (ii') together with (i) imply (ii). For we have

(g']*dap)(gq)(X',Y') d“p(q)(gllxlg']*Y')(bY definition)

da (9a) (X,¥") (by (i1')

1 1 -1

and nqg; X=xX, nqg; = 7", hence applying (i),

Y=5Y since 75
4 m mHog

we're done.
(ii') Is merely a restatement of ap‘s equivariance.
(i') By skew symmetry we need only consider the case nqx = 0. Any
such X lies in T_G «q hence can be writte S .
q%u"d an ritten EQ(q) for some & oh

Suppose Y were a vector field in the vicinity of q. Then
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da (9)(£gsY) = Lg (.onp(,Y)) - LY(ap'(‘EQ)) - o [E0,Y]

Q
a% o, (exptg -q) (Y

exptgq) - LY(U(g)) - au[ﬁo,Y]

(the middle term occurs because o, maps into J'](u))

= gt (exp - )"0 (@) (Y, 0p o) = o [£0,Y]

(by au's equivariance)

a,(a) gt (exp-te), ¥ (a)gg»Y]

exp4tE) "%

[}

au(Q)EEQ,Y] - au(Q)[EQ,Y]

0. W

1

§6. Curvature Interpretation of the Magnetic Term

The relationship between the magnetic term in (5.1) and curvature
for the bundle w*:Q" - QJJ/G}J is essentia]y as in Kummer [1981]. An
interesting example of the realization of qu as a “p-connection“ is pro-
vided in the SL(2,€) example of the next section. But all the examples
‘presented in this paper including this one, are triviaT in the sense that
dap = 0. Although no nontrivial examples of the theory in this section,
besides those which can be worked out with the old theory, have been found
yet, this section is included for completeness and also in hopes that others
may discover examples.

We will start with a workable extension of the definition of connection.

Recall o :4—>T denotes the linearfma
9 % 7 T P

% (g) = EQ(,q)

and that Ker = .
oq %%]
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Definition. A y-connection on Q is a smooth family of linear maps
T ,qeQH
TqiTqQ > ¥ %4> 0 €0

satisfying

*
I )=Ad ol , g €G
(a) g(_gq) °Tqr 9 €6, (6.1)

(b) ]‘éoo-q is the projection pq:o;_ *’}/O;Lq'

Remarks concerning this definition:

If & acts freely then, as mentioned in 51, Q¥ =Q. Also g = {0}

and this definition reduces to the standard one for a connection.

Part (a): Here Adg 1s interpreted as the isomorphism g/o;q +0J/0;gq
TqQ > D;/o}gq. Note that this formula gives the proper transformation law

for a connection on a principal left G}J bundle.

Part (B): translates to

Ker I‘q®im o = TqQ (9 €Q¥) (6.1.b")

To see that Ker I'. nim = {0}, = i =
q % | {0}, say v oqg € im % and rngg 0.
Then ¢ € =Kero, so v=0. T i =
O}q | Oq 0 see that Ker Pq + im cq TqQ, let
v eTqQ and write v = (v - crqg) + cqg where & represents the coset

r v, that i =Tv., T : - = - =
. at is pqE q hen I‘q(v cqg) I‘qv pqg 0.

k)

Set

o TR T -
) rqhqq, o = ot
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then the remark for part (b) implies that Ker rg + (im o_nN TqQ“) = TqQ”.

q
From now on assume condition (D) holds. Then, by (ii) of Theorem 1,

i NT Q" = im o®, so that:
im Gq qQ im %
g M u
r im =T 6.2
Ker qa o qQ (6.2)

Note that rgoog = pq:%\]J _H?/%q factors Gu equivariantly:
U
/%

B

\\\\\;;“-5;

so, in the particular case that G}1 acts freely on Q" (so o}q = 0), I'};

e

is a standard connection on the principal bundle ;H:QW ~ QWG .
u
Because of (6.2) one can now define a horizontal projection

.1 oM H
hq.TqQ -+ Ker rq

and hence curvature

Ry = ,;‘drg = h;‘drrrqqu
Both h and R satisfy most of the standard formulas, in particular,
the Ad equivariance formulas, for standard connectioﬁs.

Also,‘from (6.2) we see nerer rg is an isomorphism onto T[qJQ“/Gu
because ﬁf is a submersion and  Ker = im ag . So we have the notion of
the vertical Tift, X; € Ker Fg, for a vector X € T[qJQ“/Gu. It satisfies

*
-n&xq = X.



We can now think of R as a two-form, ¢, on Q“/Gu, with values
in the 'associated bundle! Q”/Gp, with values in the 'associated bundle’

" *nd 0}/ O;q, in the standard way

*
Q X,Y = s R X*9
%Y = 19 Rl VT
or equivalently (6.3)

o (N ) =
[qJ(ﬂ*xq’ U*Yq) [q: Rq(xq, Yq)]Gu

where Gﬁ'—equivalence relation is (g,v) ~ (gq, Adgv). :

Recall {remark at end of §1),

BqSkeru if g€ QM (6.4)

So one can consider u as a linear functional on o{;/o;(_q which we will
denote by pq: o |
' s = s 6.5
| CHgsPE) = (W8 (6.5)

Because p is Gu-inVariant we have

*
A = 6
Ighgq = g (6.6)

and more importantly, the p-component of @

(Qu)q = “q°9q

makes sense as a standard two-form on QY/G .
i

24
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Th 4. . 6.7
eorem qp(q) quq (6.7)

with * in the linear algebra sense, defines a one-form of the type needed

in the basic construction, that is, o, satisfies (A2) of §1.

Also

da = Q (6.8)

M H

where dau has the same meaning as in Theorem 3.

](u)=

Proof. First we check o, satisfies (A2). au(Q) ed”

W(Igng)s8 = (T q8)  (by (9)

= (}Jq’ quqg )

(g PgE)  (by (6.1.D))

1

(8 (by (6.5)

o is equivariant:

]*r (since P*u = p ol )
q q°q 9 q

oAd _,° by (6.1.
A g-l_rgq (by (6.1.a))

=Ad * [+
g1 Ha Taq

g(a,(a) = ¢ " Equg)= ned”

Yq

1

MaqTaq (by (6.6))

au(gq)

To show (6.8), note that from (6.3) and the Gu invariance of i,

that n;Qu = pquq. So according to Theorem 3, we need only show
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H o R
do Q7 = e

Since both sides are ‘tensorial form', that is zero on vertical vectors
(see (5.4)) we need only check this on horizontal vectors, i.e., for vector

fields X, Y in Ker ™. Then:

dap(q)(X,Y) = d(uq°Pq)(X,Y)
= X(ph(Iq(Y)) - Y(uq(rq(x)) - uq°Fq[X,Y]
= -uqofq[X=YJ
and
ugeROGY) = hdrp(X,Y) =y drh(X,Y)

b

- ﬁ_ - H - H
ng X (TQY) - Y(rgX) - rplX, Y]y

n

L ] u )
“ﬂq rq[st]

and these are equal. Note it is essential that the splitting (6.2) is that
induced by (6.1.b').

Remark. Combining Kummer's [1981] interpretation of the cohomology class

of Qp as the obstruction to being able to find a symplectomorphism
*aH u
(Paw) > (T (QY6),  deb)

in the case Q" = Q, G}J =G with Q -~ Q/G a principal bundle and Duistermaat
and Heckman's [1982] method of comparing these different cohomology classes
for different p in case G is a torus, along with some type of reduction

of G's action and momentum map to those of G's maximal torus in the case
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G compact, it seems that it should be possible to come up with an

obstructional interpretation for our Qu at least for compact G.

§7. Examples

Vector Space Examples

R" or ¢" with the
*
SO(n) or SU(n). Then TQ =Q xQ

]

These concern the case Q

canonicdl inner product, and G
via the inner product, EQ(q) = g+q, the 1ifted action becomes the
diagonal action g(q,p) = (9q,9p) and the momentum map is

J(q,p)(g) = (p,E-q)

We can associate o} with 64? via some constant multiple of its Killing
form, (n,g).= ctrug® where the * means real transpose or complex
adjoint. Under this association the coadjoint action becomes the adjoint
action and is an action of isometries.

The statement "J(q,p) = " becomes “for all ¢ eo} {(p,E+q) = (u,gN.
Now <p,g-q} & ZpiE;ET% = ZpiEEE%j'= tr(pq)e*, where (pq)ij = piagl Letting
Pr:ga(n) > a denote orthogonal projection onto &, We may finally write
this as "for all ¢ EE?} tr Pr(pq)g* = ctr pg*? So by the nondegeneracy of
the Killing form:
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| Pi9j - a;p;  for S0(n)

ij  2¢s (E1)

\P:q. -q_i

—  2/-T
pJ = T"' Im <p’q> G'IJ’

for SU(n)

S0(3) = 6 on IRS

Q.

As Lie algebras, so(3) is isomorphic to IR3 with the cross product.

By adjusting the constant c¢ of (E1), we have J(q,p) = q x p, the familiar

angular momentum.

Suppose 1 # 0, ueq’: & IR3. Then

-] _
J 7 (u) = {(q.p):q x p = 1} c {(q,p):q.p €4 - {013
(note from the formula Il = nqlipy sin 6  that J;](p) is a line in
e Y.
We claim that
Y R ()]
That Q“.g:pi - {0} 1is clear. To see the other inclusion, define

L - _
qn:u - {0} » 9 ](u) by au(q) = (9, B(q)) where g(q) is the vector in
IR3 uniquely determined by the condition that {9,8(q),u} forms a right

handed orthogonal basis for IR with q x B(q)
ut - {0}

o Thus t(07T(n) = Q¥ ¢

In fact is
%

6, - s0(it) = s0(2)

equivariant, so satisfies (A2).
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M = {I
A {1}

since the identity is the only element of SO(3) which fixes two linearly

independent vectors, namely u and q. Since Ga g_Gg, a = (q,p) € J'](u),

we have

Ga=Gg= {1}
Also

6, = S0(d")

so0 condition (D1) is
dimQ¥=2=3- (1-0)

1l

dim Q - (dim (gq - dim eza)
and

™ QM - a6, = IRA\(0}/50(2) = ray

is a principal (circle) bundle. Thus, according to Lemma 2, §1 (A1) holds

also.

Condition (D) holds:

dimp}- dim ’}u =3-1=2( -0)‘ = 2(‘“""10 - dimq_g)

. —_ *
So, according to Theorem 2, we should have a diffeomorphism -\iju +T (QU/GU)

[ T*(Q“/Gu) =T (ray)

¥ will be constructed following the prescription in §1 and §2.

¢:J—](u) ~ Ker J is given by (q,p) ~ (q,p - 8(q)). and im ¢ = Ker J¥,
so the map i of y = io¢p dis unnecessary with our identifications.

The projection f:Ker J* » T*(Q“/Gu) is f(q,y) = (lqll, <q,vy?) upon
making the identification for T*(Q“/Gu) above. So, for [q,p] € Pu
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¥([q,p]) = (lql, C(q.,p - B(q) ) = (lqh, ¢(q,p ).

This is easily checked to be a diffeomorphism, directly.

We will show dau = 0, hence according to theorem 3,
¥ is a symplecto-morphism with T*Q“/Gu having its standard structure.

Let e;, e, be an orthonormal basis for u such that [e1se5,u] s
right handed, i.e. u =M ey X e,. This induces coordinates on Q" in which

il )
o (xps%,) = hghf (-x,8; + x;e,)

where q = X8 * Xo€ys In differential form notation au = "p“(-xde] +

x]dxz)/(xf + xg). It is well known that this form is closed.

s0(n) on IR"

One finds that if yu = J(q,p) # 0 then p is orthogonally similar

to a matrix of the form

----- - - 6 # 0

Assuming u of this form, p and q then lie in the x-y plane and the
rest of the example proceeds just as for n = 3 with the result that the

reduced spaces are cotangent bundles of rays.
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G = SU(3) on q = ¢

For uw # 0 regular, one finds Q“ is a three-dimensional cone

2_§ ¢ and that Gu is the two-torus acting on this

minus origin in a €
Ez. The behavior of Q“ as u moves from one Weyl chamber to another
is rather interesting. In any case Q“/Gu is a ray, so the reduced

space is again the cotangent bundle of a ray.

su(n) on ¢"
The generalization from SU(3) to SU(n) is essentially the same as
from SO(3) to SO(n). Again the reduced spaces for acceptable y are

‘cotangent bundles of rays.

SL(2,6) on its Lie Algebra

The action is the adjoint action. The infinitesimal generators are
oq(i) = [£,q]. It is well known, or easily checked, that [£,q] = 0 iff
g =12q for some z €C, when q# 0, hence QFq is the complex span

of q.
Recall (remark at end of §1) that QF = {q:?qC_ Ker u}. Nowusing the «

complex Killing form
Mm,E)= trmg

* .
we have a natural complex isomorphism q; S e;c, the complex-linear func-

tionals on 9. By taking real parts we get the following commuting diagram

of isomorphisms:

o o9

Re ¢, ) Re

2,



where o;f is the real dual. Suppose n Ed}f, H# 0 and let ﬁ be
the corresponding element in #. Then qe Q" iff Re(fi,zq)= 0 for
all z €€, which in turn is true iff (ﬁ,q )= 0. Dropping our hats,

we see

Q" = {q €Q:(q,u>=0 and q # 0} (1)

(the q # 0, because 9 = OJ,Z ker ).

In particular, for

, -1 0 2)
24" [Zo :3]]{: OBJ [zo Oz] ) {ocz'2 ;zl @)

The dimension counts are
- = - - - = - u
[g-g,1 = €-2 = 2(2-0)= 2[g, 9

for (D1), and

32
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dim ¥ = n - [gq‘ - g(};] = 6-[2-0] = 4

for (D2), so we have a winner.
The equivalence class of an (a,B8) in Cz\iO} = Q¥ under the G

action can be described
-1 *
[a,8] = {(0z ",Bz):z€ C}
Note that the determinant function,

f(a,B) = det[a BJ = —aB

is constant on equivalence classes. Also, if a8 # 0 and a'B' = op
then (a',8') = (a(a'/a), B(o/a')) hence [a,B] = [a',8']. This is easily

checked to define a diffeomorphism
Q"/6, 3 C\{0}

if we begin by taking Q to be the G-invariant subset of s2(2,C) with non-

zero determinant. Thus, by the main result:

~ T*
Pu = T"(C\{0})

Remark. If we do not make the restriction det # 0, the quotient space

Q“/Gu is the non-Hausdorff manifold, "€", consisting of € except with

two_origins (corresponding to the equivalence classes [1,0] and [0,1])
at which the topology becomes non-Hausdorff. The main result Pu = T*"m",
still holds, with the non-Hausdorff cotangent bundle interpreted in the
obvious way.

The symplectic structure is the standard one if we take the equivariant

one-form to be:
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0P
where q = . Equivariance is easily checked. The fact that
%0

au(q) € J'](u) follows from the facts that (au(q), [£,q9]) = ([q,au(q)],g)

and that [q,au(_q)_'l = p. Note that as a complex valued one-form on QW

)]

8"} 0 _a‘] o0 g i i
el VIR e

a g-1 o a' o

o, (q) [

= Jz._[-a-]da + B-]dBJ(u.sB.I)

This is holomorphic, so that, considered as a real one-form

—

1 1

do = > d Re(-o Vdo + g d8) = > Re d(-a']da + B']dB)

% Re d(o 2da ~ do - B-2dB ~ dg)
= 0

demonstrating that the structure is standard.
There is a connection interpretation for o - Since oq(g) = [£,q], a

connection, T, would be an equivariant family of maps
= + = [
vELBal g r Bty = T ) Eay

where we are using the facts that °}q is the complex span of q and

OJ,= {[€.q]:6 €@ e One finds, that infact
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v = [zr%Eﬁ;75 [q,v1,a] + (-tr(vq)/2 det q)q

(This is just linear algebra, made easier by writing q = oX + gY,
vV = va + YyY + vHH where X,Y,H are the standard basis for s(2,€), and

uding their commutation relations). So

_ 1
Pq(v) - 4 det q [QsV]-
I' is equivariant:

L] = -—-—a—-———-—-——.]
T7eqZV) = ggar g [Ad 0, Adyv]

*
z rzq(y)

] = .
T det g Adz[q,VJ =z I’q(V)

so is in fact a ﬁ-connection (see (6.1)). A simple calculation shows that

o is pel:
I 1

_ ] _ 1
11°l"q(.V) “Tdet g (u, [q,v])= <T_a'éf-q— [p,ql,v

and

1
m [}J;QJ = au(Q).

‘Homogeneous Spaces

Let H be a closed subgroup of G. Then G acts by left translation
on the homogeneous space Q = G/H of right cosets. Planchart [1982], and

A.S. Mishchenko [1982] show that in case Q is a symmetric space that the
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reduced space is zero-dimensional. Planchart's method relies on the fact that
au:Qu -> J-](u) is a Gu equivariant diffeomorphism, so in this sense

uses a special case of the methods of this paper. Planchart's: work was crucial
in the formulation of this paper in that it offered the first (and so far
only) computable non-vector space example and also the first example

for which G did not act trivially on QY.
We will use the notation |g] for the right coset gH. One computes

EG/H(IQI) = '"*Rg*g’ E € g

where m:G > G/H. So J(algl) = p 1is equivalent to

(Glglg ﬂ*Rg*£)=(p,£) VEEg (])



Since any vector in TIQIG/H can be written w*Rg*g, £ €9, this defines
a 1-form, a , on Q" CG/H and Q" consists of the |[g| for which this
equation really does define a 1-form. That is, [g|€ Q" iff whenever
n(Rg*g =0 we have (u,£) = 0. Now “g*Rg*E =0 <=> Rg*g S Lg*&’ where
,5 is H's Lie algebra, <=> £€ Adg{).

= {|qg| :Adg,g_cg Ker p}

and from the above discussion

J;](u) = T;G/H N J'](u) = {o.iu(q)} for q € Q¥. (2)

Hence o, = TrJ-](u) and J-](u) and Q" are homeomorphic. In fact
au is Gu—equivariant. This can be checked directly, or, more quickly,
it follows from the O-dimensionality of J;](u): we know J'](u) is
Gu-invariant and that if q eEJ;](u) then g-o e|J'](u) since both sets
are singletons, this means g-au(q) = au(g-q). So o, Q4 > ]( ) is

an equivariant homeomorphism, thus induces a homeomorph1sm

H ~ P
Q /Gu

Assuming (A1) holds, we see that o, is an equivariant diffeomor-

ph1sm and the d1ffeomorph1sm P Q“/G induced by T} (u) is
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prec1se]y the ¥ of the main resu]t after identifying Q“/G w1th T Q“/G 's

0-section:



¥(lal) = fla - o,(a)) = £(0,) = O

here o € J;](u) and the second equality occurs because ¢ = au(q).

Note in particular that @EPH = Q“/Gu > T*(Q“/Gu) is a homeomorphism
iff Qu/Gu is zero-dimensional.

Planchart shows that u 1is a weakly regular value of J 1in the same
manner that we do in the proof of our lemma 2. That is, he shows that if Q"
is a submanifold, then so is J'](u), as in the first part of our proof
there (the constancy of dim qq) is automatic here, sfnce Glgl = gHg']).
Then he goes through the dimension count (D1) in this special case to show
that u 1is in fact weakly regular, as we do in the second part of our proof.
To show that QM is in fact a manifold takes some work, and we will not go
into this.

Condition ﬁiﬂ of our Theorem 1 automatically holds here, since

TGq =T
g9 qQ

If condition (ii) of Theorem 1 also holds, we know y is a homeomorphism
by Theorem 2, hence Q“/Gu is zero-dimensional by a previous remark. In

this case (ii) is

TQ*=T4G . 3
qQ g%, 9 (3)

which is directly checkable in the symmetric case. We use Planchart's

argument.
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Proof of (3). In the symmetric case, we have the Cartan decomposition:

o}=§®w, where }515 H's 1ie algebra, m/ may be identified with
Ty6/H, 0 = eH, via m, and Emsml E?}y, Without loss of generality, we
may assume 0 = eH € Q¥, 1i.e. é,g Ker u, and do our work at q = 0, since
for any other q = gH, the Cartan decomposition just gets shifted by Adg.
The inclusion Tun~q_g TqQu is automatic so say V = mgVv € TqQu
and let it be represented by the curve [c(t)| = m(c(t)) in Q", where c(t)

is a curve through e 1in G vrepresenting v = a%-c(t)|t=o €m. Then

d g _
My ker w50 G Ad = Bl Cker wo Also [v,wl cff, since
v Em.  Now /;S ker u, so [v,4] CKer u. Therefore v g, and

V=1 ETG *q.
TV = g9

Another Line of Investigation:

is in connection with some work of Wolf [1975] in which he showed that
for p a regular nilpotent element in the Lie algebra of a semisimple G
that its adjoiht orbit is diffeomorphic to an open subset of T*(G/P) where
P C G corresponds to a real poalrization for . In particular for G =
S0(n,1) one gets G/P = S" and the orbit is diffeomorphic to T*s™ {o-
section}. It is not clear how our work would be extended to this case, for

imy s inherently a subbundle of T*(Q“/Gu).
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Appendix 1. The construction of f:Ker J" *’T*Q“/Gu

f is defined by the duality pairing
€ s v} ={a_,v)
f(aq) Teq %

where v € TqQ” and 7 = 1* denotes the projection QW Q“/Gu, which
we assume to be a submersion.
We will show f's fibres are Gu orbits and that f also is a submersion.

First, f 1is well defined: if m, v v
q1 q2

T G +q, hence {a ,v. - Vv, =0, since a € Ker J%.
q g1 2 q

To see that the fibres of f are exactly the Gu orbits we must show:

=T then Vi -V € Ker “*q =

*

2

*
f = L) <=> €6 = .
(«aq) f (.aq ) 19 €6, ga, = o

<=: If g*aq = aq" then

<f(aq.),1r*q.v) = <W>= (ocq,g*V>= <f(aq), Txg9xV )

= (f(aq)’ ﬂ*ql\/) s

the last equality because mwog = w and gq' = q. So f(aq,) = f(aq).

= : Conversely, if f(aq) = f(aq,), then both are forms over the same

base point in Q“/Gu, i.e. 3g GEGU, gq' = q. We can then turn this string

of equalities inside out, that is, the two outside terms are now equal, and
*

we can work inward, meeting at the bracketed terms which tells us aq. =g ag

To see that f 1is a submersion, note we could also défine1 f by

(0 ) =a, or fla)=1"Ya . Here m:T Q"G - T Q" is injective
q " q q q q . q q Tq H q

(since m, 14is onto) and im ﬂq = Ker Jg' (this is essentially why f is
well defined), so taking the inverse of ﬂ; makes sense and ﬂ;-] = fq is

. . . H * U
a linear isomorphism Ker Jq > quQ /Guv.
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Let (n,v), (y> (V) be local trivilization charts for the vector

bundles Ker J¥, T*Q“/Gu, “réspectivéiy. So

n(q,v) = (q.n(q)v), for ker J"

y(mq,v) = (nmq, y(nq)v), for T*Q“/Gu

where v € IRK, k = fibre dim Ker J* = fibre dim T'Q" (= dim Q" - (9, - o)
in the notation of Theorem 1), n(q) EEAut(IRk, Ker Jg), and

—_— * .

v(q) GEAut(IRk; anQ“/Gu). Then f is 'Yhiofort in these coordinates:

¥ len(a.v) = (m9,(Yrg) of Fila) V)

W

B
q

Bq € Ge{K) and q -~ rq is a smooth map U + G(K). Then in these :coordin-

ates, Tf is

which is onto, since Bq and an are.



2. A demonstration that the natural embedding

] :%/ﬂ’(}lj qg/”’u

is isotropic for q €Q¥, that is, im Jj C (im j)l where 1. is

taken with respect to the canonical symplectic form

W([E1Iy) = = wllE]) = g Adg oy u(Y g

on 03ﬂ9p (the brgckets inside w denote cosets).

Recall tpat Bq CKer u (remark, end of §1). Then, if. £, v € %4’

Ad G% C Ker u, so

exp-tEY

3 U 3 M = _.d_ ' = "
w(i(g + oo,iq), iy + 02,q)) It “(Adexp-th) t=0 = 0
In particular, since dim imj + dim imjl = dimq}/zhl for the finite
dimensional case, then j 1is a Lagrangian embedding iff the dimension

count (D) holds.

3. Proof of Lemma, §1

Assume (A2) and (A3).
Statement (iv) of Theorem 1 is that (A1) implies (A1').
For the other implication, assume (A1'). We need to show
-1 . . *
(1) J (u) 1is a submanifold of T Q,
and  (2) TI7'(w) = ker T3, for a€d”(y).

In the proof of Thereom 1 (54, (iv) - (v), fact (c)) we proved

42
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Ker is a vector subbundle of T*uQ with fibre dimension n-(g;gq).

J
Q* Q
This proof is valid in the present situation. Adding o that is
applying the diffeomorphism ¢'] considered as a map Tqu > T*uQ’ one
Q
sees that

3w = 67 (Ker )

Q
. . * *
is a submanifold of T pQ, hence of T.Q. Ker pJ is a vector bundle over
| ¢ Q
Q¥ with projection T[Ker uJ a submersion. Since ¢'] is a fibre
Q

preserving diffeomorphism, rld'l(u) is also a submersion, proving that
it has constant rank dim Q¥

To verify the second statement, note Ker Tda ;;Ta(J'](p)) always, SO
equality of these vector spaces holds if their dimensions are equal. From

the last péragraph

il

dim 37 (u) = dim Ker _J = dim Q" + fibre dim Ker J
Q" Q"

dim Q" + n - (9-9,)

The calculation

dim Ker TJ_ = 2n - (g-g )

done earlier (54, (iv)-(v) fact (b)) is valid here. These are equal, using

the isotropy lemma, if (D1) holds. M
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