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Abstract. A geometric quantization of a Kahler manifold, viewed as a symplectic manifold,

depends on the complex structure compatible with the symplectic form. The quantizations form

a vector bundle over the space of such complex structures. Having a canonical quantization would
amount to finding a natural (projectively) flat connection on this vector bundle. We prove that
for a broad class of manifolds, including symplectic homogeneous spaces (e.g., the sphere), such
connection does not exist. This is a consequence of a “no-go” theorem claiming that the entire
Lie algebra of smooth functions on a compact symplectic manifold cannot be quantized, i.e., it
has no essentially nontrivial finite-dimensional representations.

1. Introduction. The quantization of a classical mechanical system is, in its most
ambitious form, a representation R of some subalgebra A of the Lie algebra of smooth
functions by self-adjoint operators on a Hilbert space Q. The Lie algebra structure on
the space of functions is given by the Poisson bracket and the representation is usually
assumed to satisfy some extra conditions which we will discuss later. It is generally
accepted, however, that such a quantization does not exist when the algebra A is too
large. (See, e.g., [Atk, Avl, Av2], and also [GGT, GGG] for a detailed discussion. We
will return to this subject later.) In other words, the quantization problem in the strict
form stated above has no solution. Results claiming that there are no such quantizations
are often referred to as no-go theorems.

Thus, one often tries either to just construct the Hilbert space Q, without quantizing
the functions, or to only find the algebra of “operators” representing A without a Hilbert
space on which they would act. The latter program, which can successfully be carried
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m symplectic manifolds, is called deformation quantization (see [We] for a review)
we are not concerned with it here. The former question, addressed by geometric
tization (see, e.g., [Wo)), is the subject of the present paper.
ne of the main problems with geometric quantization, arising already for nice sym-
ic manifolds such as S2, is that the construction of the geometric quantization space
tably involves an extra structure (polarization). This leads to the question of whether
uantization spaces constructed for different polarizations can be naturally identified.
er rather weak additional hypotheses the spaces are isomorphic.) In this paper we
that the answer to this question is negative for a broad class of manifolds including
“he problem of geometric quantization has no solution either!
efore we recall what geometric quantization is and outline our proof, let us return
e no-go theorems. The first such theorem is a classical result due to Groenewold and
Hove stating that the algebra of polynomials on R?" has no representation that would
ict to the Schrodinger representation of the Heisenberg algebra, i.e., the algebra of
r functions. (The Schrédinger representation is the unique unitary representation of
leisenberg group; see, e.g., [LV] for more details and further references.) This result
t the foundation of the general principle that a sufficiently large algebra of functions
anot be quantized. (See [Atk, Avl, Av2, Gr, GGH, GGT, GGG], and also Section 3
1ore details.)
he self-adjoint representations of A are required to satisfy certain extra conditions
arrant the title “quantizations”. Although there is no consensus on what the condi-
are, their main goal is to ensure that the representation is “small”. For instance, in
najority of examples, the conditions include that the representation of the constant
function is constI, where const # 0. (This is the case with the Groenewold—Van
theorem.) Such conditions exclude representations like the one arising from the
ral action of the group of symplectomorphisms on the space of L2-functions. When
ymplectic manifold M in question is compact (and connected), its quantization is
lly assumed to be finite-dimensional with the dimension equal to the Riemann-Roch
ser RR(M). A sufficiently large Lie algebra A of functions on M has no “essentially
trivial” finite-dimensional representations, i.e., each such representation factors thro-
a representation of R = A/{A, A}. This rather well-known fact alone is sufficient to
lude that under some natural hypotheses about the manifold, M cannot be quanti-
n a canonical way. In other words, the geometric quantization spaces obtained for
-ent polarizations cannot be naturally identified. (See Section 3).
Ve now return to the question of naturally identifying various quantization spaces.
approach is inspired by recent results on quantization of moduli spaces of flat con-
ons. (See, e.g., [ADPW, Ati, Hi] and references therein.) Given an integral compact
slectic manifold (M,w), we consider the space J of all complex structures com-
sle with w (i.e., complex polarizations). Then, for every J € J, the quantization
V, k) is defined to be the space of J-holomorphic sections of the pre-quantum line
lle L*. We take k sufficiently large to ensure that a vanishing theorem applies, so
dim Q (M, k) = RR(M, kw). (By definition, L is a line bundle with a connection V
i curvature is w. The pair, V and J, gives rise to the structure of a holomorphic line
lle on L, and so on L*.)
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Fix k, and consider the collection {Q (M, k)}je7 as a vector bundle E over J. Here we
ignore the fact that the lower bound on k necessary for the vanishing theorem may depend
on J. (This leaves open the interesting question: Is there a universal J-independent
bound?) An identification of quantizations (or their projectivizations) is the same as a
(projectively) flat connection on E. The identification is natural if it is equivariant with
respect to the group of symplectomorphisms Ham. Strictly speaking this group does not
act on E, but it has a central extension Conty which acts. The Lie algebra of Conty is
the algebra A = C'°°(M) with respect to the Poisson bracket { , }. (The group Cont, is a
subgroup of the group of contactomorphisms of the unit circle bundle associated with L.)

If it existed, a (projectively) flat Contg-invariant connection would give rise to a
projective representation R of A on the fiber of E. Since this fiber is finite-dimensional,
the representation R must factor through A/{A, A} = R as we pointed out above. On the
other hand, such a representation R cannot exist if for some Jy € J, the Kahler manifold
(M,w, Jy) has a continuous group GG of Hamiltonian symmetries. For R would restrict
to a non-trivial representation of the Lie algebra of G on Qj,(M, k). This contradicts
the fact that R factors through A/{A, A}. Hence, a Conty-invariant (projectively) flat
connection does not exist for a broad class of manifolds M including homogeneous spaces
and, in particular, S2. The details are given in Section 2.

Of course, it may well happen that 7 is empty. In this case, instead of working with
holomorphic sections of L¥, one considers the index of the SpinC-Dirac operator D or
of the rolled-up 8 operator, [Du]. The index is a virtual space, which still has the right
dimension RR(M, kw). For 8 and D there are again vanishing theorems (see [GU] and
(BUJ), ensuring that the index is a genuine vector space Qs(M, k). This space is equal to
HO(M, O(L*)) when the manifold is Kahler and k is large enough. Both of the operators
depend on a certain extra structure on M, e.g., an almost complex structure for 8. These
extra structures form a space serving, similarly to .7, as the base of the index vector
bundle E, and the above argument applies word-for-word. (This can be viewed as an
answer to the question asked in [Fr].)

Acknowledgments. The authors are grateful to Joseph Bernstein, Alexander Given-
tal, Victor Guillemin, Leonid Polterovich, and Jean-Claude Sikorav for useful discussions.
The first author would like to thank the Tel Aviv University for its hospitality during
the period when the work on this manuscript was started.

2. Natural flat connections on the vector bundle of quantizations. Let M
be a compact Kahler manifold with symplectic form w, which is assumed throughout this
section to represent an integral cohomology class. As usual in geometric quantization, fix
a Hermitian line bundle L over M with ¢, (L) = [w] (the prequantization line bundle) and
a Hermitian connection on L whose curvature is w. Consider the space J of all complex
structures J on M which are compatible with w in the sense that w(-, J-) is a Riemannian
metric on M. For every J € J, the connection on L gives rise to the structure of a
holomorphic line bundle on L. Then, given a sufficiently large k, the vanishing theorem
applies to the line bundle L* for a fixed J € J. In other words, HI(M, O(L*)) = 0 when
q¢> 0 and k > kg, where ko depends on J. Thus, we can take the space of J-holomorphic
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us HY(M, O(L¥)), k > ko, of L* as the quantization of M. Denote it by Q(M, k)
t Qs(M) when k is fixed or irrelevant.
t Jo be a C'-small neighborhood of a fixed complex structure Jo € J. It is not
Ut to see that one can take the same ko for all J € Jp. Note that sometimes the
is true for the entire space J. For example, this is the case when dimg M = 2.
3 k > ko, we obtain a vector bundle E over Jy whose fiber over J is Qs (M, k).
t Ham be the group of Hamiltonian symplectomorphisms of M. The elements of
are symplectomorphisms which can be given as time-one flows of time-dependent
tonians. It is clear that Ham acts (locally) on Jo.
+lift this action to E, consider the group Cont of diffeomorphisms of the unit circle
e U of L which preserve the connection form 4. Clearly, 8 is a contact form on U.
Cont consists of those contact transformations which preserve the contact form 6
‘not just the contact field), and which, as a consequence, are also bundle automor-
s. Let Contg be the identity connected component in Cont, i.e., the elements of
are isotopic to id in Cont. Every element of Conty naturally covers a symplecto-
ism of M, which belongs to Ham. The projection Conty — Ham is surjective, and
es Contp into a one-dimensional central extension of Ham by U(1). The Lie algebra
itg is just C°(M). Since Contg acts on L, and so on L*, it also acts (locally) on
the latter action is a lift of the Ham-action on Jy. A connection on E is said to
‘ural if it is invariant under the Contg-action.

w we are in a position to state our main observation, which will be proved in the
ection:

(EOREM 1. Assume that the stabilizer G of Jo in Ham has positive dimension and
1e infinitesimal representation of G on Qj,(M) is non-trivial. Then there is no
1 (projectively) flat connection on E.

1en M is two-dimensional, the theorem applies to M = 52 only, showing that the
tric quantizations of §2 for different complex structures cannot be identified. Note
1ere are many (projectively) flat connections on E, for J and Jp are contractible,

any natural connections on E, but there is no connection which is simultaneously
d natural.

MARK 1. 1. As mentioned above, Theorem 1 extends word-for-word to compact
ictic, not necessarily Kahler, manifolds. In this case, J is the space of almost-
:x structures compatible with the symplectic structure and Jo is a neighborhood
ven structure Jy in J. The quantization bundle E over Jp is defined using the
ing theorems for either the SpinC-Dirac operator D or the rolled-up & operator
iU, BU]J). Note also that in this case J is a contractible Fréchet manifold.

Nhat makes this theorem somewhat surprising is a recent collection of constructions
ectively flat connections related to topological quantum field theory. Axelrod-Della
-Witten [ADPW], and following them Atiyah [Ati] and Hitchin [Hi], constructed
zations @y of the moduli space My of flat vector bundles over a Riemann surface
e the additional polarization data is a complex structure on X. Their connections
;ural with respect to transformations of My induced by those of X, and not with

4
E
i |4

GEOMETRIC QUANTIZATION AND NO-GO THEOREMS 73

respect to all of Conto(Mz). Note also that our Theorem 1 seems to contradict what is
id i i], page 34-35.
Sald;l:.llijsg]; I;hiory for a compact manifold X associates the x.'ector sp.ace HY .of g-
harmonic p-forms on X to each Riemannian metric g on X. This space is canonically
isomorphic to the p-th real cohomology of X. Consequently, Hodge theor}.' deﬁnes.a. flat
connection on the vector bundle H? — M over the space M of Riemannian metncs.on
X. This connection is Diff (X) invariant. As a result, we have an indt.lced ‘representatlon
of Diff (X) on each HY. Of course, this representation is trivial on the identity cor.nponent
Diff (X) of X. Consequently, this induces the usual representation of the mapping class
iff (X)/Diff o(X) on cohomology.
groi?vl\;;{lg tl'zé 102.? (act)ion of Ham on J is free, it induces a projectively flat con.nection
along the orbit of Ham. This connection is natural but does not seem to be of any interest

for quantization.

3. No-go Theorems. Theorem 1 is an easy consequence of the' generz‘;l no-go the-
orems discussed in this section. Let (M,w) be a connected symplectic manifold. Now w
is not assumed to be integral and M need not be compact. Let A = CP(M) b‘f’ the
Lie algebra of smooth compactly supported functions on M with resp.ect: to the Poisson
bracket. Denote by Ao the commutant Ao = {A, A} of A. In fact, Ao is J'ust tl.le algebra
of functions with zero mean and, therefore, Ag is a maximal ideal of codimension one.

THEOREM 2. The commutant Ao 1s the only ideal of finite codimension in the Lie
algebra A.

This theorem has a long history. For a compact manifold, it is due to A‘xvez, [Av?], who
proposed a very interesting proof relying on the properties of the sympk?ctlc Laplacian. An
algebraic version of Theorem 2, which applies to a broad class of Poisson algebras, has
been obtained by Atkin [Atk]. This class includes the algebra of compactly supportfad
functions and the algebra of (real) analytic functions when (M,w) is (real) analytic.
Furthermore, it appears that the reasoning and the key results of [Atk] (see Th.ec?rem 6..9
and Section 9) apply to the Poisson algebra of polynomial functions .on ?‘ coadjoint orbit
for a compact semisimple Lie algebra, which would give a genera}lzatlon of the‘ no-go
theorem of [GGH]. A simple direct proof of Theorem 2 can be obtained by adapting the
methods of [Om] (Chapter X), which, in turn, go back to Shanks and Pursell {SP].

REMARK 2. Theorem 2 is just a reflection of the general fact that the a.lge.bra 13,
like many infinite-dimensional algebras of vector fields, is in a certain 'sense “sunplle .
This assertion should not be taken literally — A has many ideals of infinite cod_l.mensu?n
(functions supported within a given set) — but the Lie group of A is already simple in
the algebraic sense [Ba]. (For more details see [Av1, Av2, ADL, Om, Atk], and references
therein.) . o

In many of the papers quoted above, in varying generality, the following descnptlo.n of
maximal ideals in A is given. For any € M, let I be the ideal of A formed by functions
vanishing at  together with all their partial derivatives. It is well known and eas?f to ?ee
that I, is a maximal ideal. In other words, the Lie algebra of formal power series with
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sson bracket is simple. These and Ao are the only mazimal ideals in A, ie.
vimal ideal is either Ag or I, for some z.

COROLLARY 3. Any nontrivial finite-dimensional representation of A factors through
presentation of A/Ay = R.

Thus, if a quantization of A4 is to be understood as just a finite-dimensional repre-
ation, we conclude that there are no “non-trivial” quantizations. It is also worth
cing that the corollary still holds for representations R in a Hilbert space by bounded
‘ators, provided that when M is compact R(1) is a scalar operator [Av2].

Jow we are in a position to prove Theorem 1 by reducing it to the no-go theorem
:orem 2).

’ROOF. Arguing by contradiction, assume that there is a natural projectively flat
ection on E. This connection will be thought of as a flat connection on the pro jecti-

ion bundle PF of E. Our goal is to construct, using this connection, a representation
= C*(M), the Lie algebra of Conty, on the fiber PQ = PQ,,(M) whose existence

d contradict Theorem 2.

or f € A, denote by q-Sff the (local) flow on E generated by f in time ¢ and by ¢% the

1) flow on Jp induced by the Hamiltonian flow of f on M in time ¢t. (In fact, ¢.S‘f is

sed by the contact flow of f on the unit circle bundle.) Let II(J;, J;) be the parallel

port from the fiber of PE over J; to the fiber over Ja. Since the connection on PE is

‘his operator is well defined. Finally, define a linear homomorphism R(f): PQ — PQ

d -
R(f)(v) = ZT(#4(J0), Jo)d5(v)]
t=0
v € PQ. In other words, v is moved to the fiber over ¢tf (Jo) using the group action

hen transported back to PQ by means of the connection. We claim that R is a
:ctive) representation of A4 in Q, ie.,

R({f,9}) = [R(f), R(g)]

+ Lie algebra of the group of projective transformations of Q.
1 see this, recall that

T2 T IT I~T J—7
1.9 = 879507 ¢ " + O(7°).
2rmore, H(ﬁ;, a9} (Jo), Jo) is equal, up to O(73), to the parallel transport from the
wer ¢3¢76:7 9.7 (Jo) to PQ. Thus,
s 1 T AT A—T 4 —T AT AT I—T 71—
now focus on [R(f), R(g)}). By definition,

[R(f), R(9)] = lim ;lg(commutator),

—

commutator = {(TI(¢7(Jo), Jo)tl;})(n(ﬁ(cfo), Jo)‘ig)
x(II(¢%(Jo), JO)J’})_I(HW;(JO% JO)‘I;;)—I}-

, every
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To calculate the commutator, we use the assumption that the connection is natural, i.e.,

Conto-invariant. Explicitly, this assumption means that
I(J1, J2)é = $RIL($hJ1, Sh2)
» i that II(J;, J2)~* = I1(J2, J1), we transform the
iiﬁitttirﬁﬁi: relg]it ho::sr::t;leg oaflst(l,'xe expregsilon fZ)r [R(F), R(g)] as follows:
commutator = I1(¢7(Jo), Jo) $31L(¢5(Jo), Jo)#;
x¢7 " I(Jo, 67 (Jo)) 5 "TL(Jo, ¢Z(J02)
= I1(¢}(Jo), Jo) (8765 (Jo), 67 (o)) 8785
x$7 "T1(Jo, $7(Jo)) &5 "TL(Jo, 65 (Jo))
= I($7(Jo), Jo) (8795 (o), $7(J0))
xXI1(95¢507 " (Jo), #7965 (Jo)) $76707 76"
xII(Jo,dJ;(Jo))
= I(¢7(Jo), Jo) 1(#7 85 (Jo), ¢3(Jo))
xI1(¢78;67 " (Jo), 6745 (Jo))
xI1(87367 78, (Jo), #7367 (Jo))
x876;67745" o
= I(¢76767 76,7 (Jo), Jo) #7567 765 -
Comparing this with the formula for R({f,g}), we see that R is indeed a representation. m

4. Concluding remarks. One natural connection on E seems to be ?f a partic.ula.r
interest. For the sake of simplicity, we describe it for the case w‘hen M is a Kahler n.la.rgxfold
and, thus, Jo is the space of complex structures compatible with a fixed sympleFtlc 'orm.

iet s i)e a section of E and J(t) a path in Jo. Observe that every fiber EJ s a hnf:ar
subspace in the linear space C®°(M; L) of smooth sections of the prequantization line
bundle L over M. We set

Vji0ys(0) = Ps'(0),
where &'(0) € C®°(M; L) is the derivative of s(J (t)) with respect_ totatt=0and f is
the orthogonal projection to E (), the space of holomorphic se:ctxons of L for J(0). It }is
easy to check that V is indeed a connection. (A similar connection can Pe defined for‘t e
vector bundle of quantizations in the almost complex case.) ’Ehe following two questions
on the properties of V appear interesting already for M = S§*

e Is there an explicit expression for the curvature of v?

The curvature of V evaluated on the vectors 8/8t, and 8/8t, tangent to a two-;;atrax;le)ti
family J(t1,t2) is equal, as is easy to see, to —[6P/6t1,6P/6t%] w}}ere PB— ( ;,( 2lic;t .‘
the orthogonal projection to Ej, ¢,)- (This holds only when M is Ka.hler.? yla.nthai) a
expression we mean a formula which can be used, for example, to see directly 2t o
curvature is nonzero. From a different perspective Theorem 1 shows that the vector bundle
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¥ yield some information on the Conty-equivariant Chern classes of E.

To state the second question, inspired to some extend by the results of [Gu], consider -

- curvature for E with fiber Q (M, k) over J as a function of k.

e Is it true that the curvature of ¥ goes to zero as k — oco?

[Ati]
Atk]
Avi]
)
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BU]
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