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Abstract

We present a dictionary between gauge theory and control
theory. This is useful for problems involving the control of the
orientations of deformable bodies (robots, gymnasts) by means
of shape deformations. In the last section we present some ideas
on the stabilization of nonholonomic control systems, where the
objective is a given submanifold instead of a single point.

Acknowledgement : I would like to thank R. Murray for a
useful discussion regarding feedback stabilization, M. Kawai for
telling me about Coron’s result, and M. Enos for correcting an
error concerning U-joints.




344

1 The setting

We will be discussing control laws:
¢ = h(q)u 1)

linear in the control u. Thus h(q) is a linear operator depending smoothly
on the state . We will be especially interested in cases where ¢ splits

locally as
g=(z,9) (2)

so that the control law has the form

T=u;9= —A(a:,g)u. (3)
Moreover g will take values in a Lie group G, usually the rotation group.

Remark 1 Any control law of the form (1) can be reduced to the form (3
) by a smooth feedback transformation u+— az)u, linear in the controls:

provided that
a) there are fewer controls than states.

b) h(q) has mazimal rank.

The class of examples we have in mind concerns the attitude control
of a deformable body in free fall. The problem of a falling cat righting
itself or of a satellite reorienting itself by means of rotors are examples.
For these examples z coordinatizes the body’s shape and g coordinatizes
its orientation relative to a fixed inertial frame. Thus g takes values in the
rotation group G of (two or three dimensional) space. A(z,g) is then a
matrix which transforms according to

A(z,991) = 9A(z,91) (4)

Control law (3) can be rewritten in terms of matrix-valued differential

forms:

dg + A(z,g)dz =0 (5)
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a rewrite of the statement ? angular

In our class of examples eq.( 9) is
momentum equals zero”.

We are deformable bodies! Imagine that we are in freefall with zero total

m. Our problem is to reorient ourselves, say right-side-up,

angular momentu
by changing our shape. Such a problem is faced by gymnasts, falling cats,

and unfortunate robots. Our control variables are the deformations dz of

our shape. These are affected in turn by exerting torques on joints and
extending or retracting limbs and we will henceforth ignore the dynamical

problem of implementing the dz’s. Our objective is to control g.

A spatial rotation g € G acts on us by rotation:
¢—94=9> (6)

q being our configuration before rotation and ¢’ our configuration after
rotation. The space of all gq’s forms our configuration space Q. Two shapes
are the same if they differ by a rotation. Thus the shape space S is the
quotient space:

$=Q/G
Let

7:Q—S

denote the map which assigns to each configuration g its shape ¢ = 7(g)-
We say that G acts freely if whenever gg = ¢ We have that g = e where e
denotes the identity of the group. In this case S is a smooth manifold and

7 gives @ the structure of a principal G-bundle.

Definition 1 7: Q — S is a principal G-bundle if there 13 @ covering of
shape space S by open sets U C S together with o family of diffeomorphisms

(smooth maps with smooth inverses)

¢U:UXG—->7r‘1(U)CQ,

¢v: (z,9)— 4
called ”local irivializations” with the property that whenever ¢ = ¢u(z,9)

undergoes the rotation ¢ — 019 then according to the local trivialization éu

we have
(z,g) i (wvglg)
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Robot coordinates provide an example of a local trivialization. If there
are no constraints on the joints then they actually afford a global trivial-
ization, that is , we can take U = S so that @ = S x G. Consider a robot
made of rigid bodies Ba, ¢ = 1,..., N attached to each other by joints j;.
Abstractly we can think of the robot as a graph with edges B, and ver-
tices j;. The shape z € S is specified by listing the relative joint angles
Xap € G = SO(d), where d = 2 for planar robots and 3 for spatial ones.
If in addition to these joint angles we specify the center of mass ¢ of the
entire configuration, or of one of the bodies, and the orientation g € G of
a single one of the bodies relative to an inertial frame then we have
completely specified the robot’s configuration ¢. If the body is in freefall
then ¢ = c(t) is determined beyond our control. Consequently we ignore
the center of mass coordinate c, except for the time constraint that it gives
us: whatever we decide to do about our orientation we must do before we
hit the ground! The global trivialization is then ¢ — (7,9) = (Xap, 9)-

Remark 2 Why should we worry about bundles when the configuration
space Q i3 isomorphic to S x G¢ There are two reasons. The first is that
this isomorphism is not canonical. It involved singling out one of the bodies
in order to compare its orientation with an inertial frame. Thus we have
broken some symmelry (gauge invariance) in the problem and ignoring this
symmetry can be detrimental. The other reason is that typically there are
numerous and various consiraints on the Xap according to the incidence
relations of the graph, the fact that solid objects cannot pass through each
other, and the type of joints which join them. These constrainis can lead
to nontrivial bundles, in spite of the fact that without the constraints the

bundle is always trivial.

The constraint “angular momentum equals zero” can be written
I(w,g)dg+M(:z:,g)da: =0 (7)

I(z,g) is the locked inertia tensor. This is the moment of inertia tensor of
the robot when all of its joints are locked in the shape x and orientation
g. M(z,g)dz is the total angular momentum which would result from
deforming the joints from & to = + dz without changing g. Our control law

is thus of the form of eq. 5 with
Az, g) = I(z,9)" M(,9) ®)
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(I is invertible if the action is free.) This last formula is called the ‘master
formula” or ‘master gauge’ by Shapere and Wilczek , [25] , [27]. The reader
may check that it satisfies the transformation law of eq. (4).

Remark 3 Historical Remark Formulas 7 ; 8 and the fact that they
define a connection can be found in Guichardet’s paper ?On Molecular Dy-
namics” [14]. They were rediscovered and further ezploited by Shapere and
Wilczeck [25] [26] [27]. See also Monigomery [20], [21].

Example 1 Heisenberg’s Flywheel Consider a point mass m connected
by a massless rod to a fiywheel with moment of inertia I. The flywheel is
in turn attached to a table by a joint on which the wheel spins freely. The
joint is frinctionless so that exerts no torque on the assembly. Then the
total angular momentum is zero.

Id + m(zdy — ydy) =0 (9)

by conservation, assuming it is initially zero. Here 8 is the angle of the
flywheel relative to the table and (z,y) are the mass’s coordinates, both
measured with respect to coordinate axes laid out the table. See figure 1,

below.

We can exert a torque on the rod to rotate it relative to the wheel
and we can slide the mass back and forth on the rod. Thus we have two
controls, the torque 7 and sliding speed s, and three states (z,¥,8). Eq. (
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9 ) encodes the control law. A linear tranformation of the form

()= 3e0(7).

where J is a 2 X 2 matrix depending algebraically on = and y, will transform
the control laws into the form

T=u
y=v
) = —afzv ~ yu)

where a = ';I This is the model equation investigated by Brockett in [6],

[5)-
Suppose we want to optimize the length
/ Vu? +vid

of the zy path among all paths with fixed endpoints ¢go = (zo, ¥o,60) and
@1 = (z1,%1,61). Then the optimal path projects to an arc of a circle in
the xy plane. The end point conditions on @ determines the radius of the
circle.

6 — 0, =—a [y(zaﬁ; —ydy) = —2aArea (10)

where Area is the signed area of the sector formed by the arc together with
the radial segments through its endpoints.

To recast the problem in terms of shape variables, put polar coordinates
(r,¢) on the xy plane. Then eq. ( 9 ) reads

I+ mr2dp=0 (11)
Shape space coordinates are r and ¢ = ¢ — . Then:
—mr?
= — 12
@ I+ mrzd/) 12

Remark 4 History We have called this system ”The Heisenberg flywheel”
because it is isomorphic to a canonical conirol system on the Heisenberg
group H® a special three-dimensional nilpotent Lie group. Write:

0 0
=51 "%




o )
P = 5; —_ Olyz—e'
ad
Z= %
Then
[Q,Pl=0aZ (13)

with all other Lie brackets zero. (13) is the Heisenberg commutation rela-
tive, with a = 3. The control law is ¢ = u(t) Q(9) + v(t) P(q), 4 € H3.

This model system has been eztensively studied by Brockett, [6] , [5]-

This optimal control problem goes back to mythological times. Iis so-
lution is attributed to Dido. See L.C. Young p. 215, [82). Actually Dido
solved the dual problem: for fized length mazimize the area enclosed by
the arc together with the straight line segment joining its endpoints. The
solutions to this problem are the same.

9 The Dictionary

We will now present the dictionary. The reader who does not know the
theory of principal bundles may need to refer to § 3. The last entry is
described in § 4. For additional details see [20], [21]
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Control Gauge Theory Deformable Body
control law equations of parallel | total angular
qd = h(q)u transport momentum is zero

dy+ A(z,g)dc =0

state space

total space Q

configuration space

variables g

transverse to contr.

fiber 7~1(s)

all rotations of a
given shape s

base space

structure group G group of rigid
rotations
Lie algebra of G space of angular
velocities
directly controlled | base space S shape space
variables z
bundle projection 7 to each config.
q assigns its shape
z = n(q)
local trivialization robot coordinates
or choice of gauge are one example
controls u tangent vectors to shape deformations

u(t) steers from
o to 1

q1 1s the parallel
translate of ¢p along
z(t) where ¢ = u(t)

the map qo —— ¢ is
called the holonomy
when o = o

go — ¢ is the
reorientation of

the body

Chow’s control.
criterion

Ambrose-Singer Thm.

What reorientations
are possible?

Lie bracket
conditions on
contr. vector field

curvature conditions

optimal control
for a quadratic
cost function

motions of a charged
particle in the master

Yang-Mills field

most efficient shape
deformat. yield. a
desired reorient. _J




3 Connection on Principal Bundles

3.1 Goals and References

The goal of this section is to summarize the theory of a principal bundle
with connection and to provide some details of how to get from one column
of the dictionary to the other.

For a more detailed treatment of bundles see Steenrod [29]. For a treat-
ment of connections see Bleecker [3] , Chern [8], especially the appendix ,
or Spivak [28] .

3.2 Bundles

As we have said already, the map 7 : @ — S which assigns to each con-
figuration its shape is an example of a principal G bundle, provided the
G action is free. In definition 1 above we defined principal G bundles and
local trivializations.

S is called the base space, Q the total space and the sets 771(s) C @
are called the fibers. Thus Q is the union over S of its fibers. Each fiber
is diffeomorphic to G, but not in a canonical way. We should think of
the fibers as “affine groups”, groups G with no preferred identity. This
ambiguity in choice of identity is the essence of gauge theory.

A smooth choice of identity o(s) € 7~'(s) for each s in some neighbor-
hood is called a ‘local section”. Thus a local section is a map

o:UCS—Q
satisfying
n(o(s)) = s

for all z in U. Local sections define local trivializations (definition 1 above)
according to the rule

$u(z,9) = g9(s)
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and this defines a one-to-one correspondence between local sections and

local trivializations.

In the case of the deformable body the fiber over a shape consists of all
configurations having this shape. The ambiguity is that of how to realize
a given shape by actually embedding it in space. A local section is thus a
choice of reference configuration for each shape in some neighborhood U of

shapes.

Remark 5 In the physics literature the choice of section is often referred
1o as the choice of gauge. The gauge invariance of a property is then akin
to coordinate invariance. A statement or property is called gauge invariant

if its validity 1s independent of the particular choice of local section used to

perform a calculation.

In Kaluza-Klein theories of elementary particle physics S is space-time
and G is a space of internal variables attached by w to each point of space-

time.

There are topological obstructions to finding an isomorphism @ = SXG.

The simplest of these are the Chern classes. See [8].

3.3 Connections

The following more algebraic point of view regarding principal bundles is
useful in defining connections. Given any point ¢ in @, let Ry (g) = ¢9
(“right multiplication by q”). Then we have a sequence of maps

¢ Q-5 s (14)

s. We will call this the «bundle sequence”.
maps in the following sense. The map Ry
and 7~1(s) = image(R,) where n(g) = 3.
al splitting of this exact sequence.

of smooth maps between manifold
It is an exact sequence of smooth
is one-to-one, the map = is onto,
A local section can be thought of as a loc

of the bundle sequence
tained by taking dif-

A connection is a family of infinitesimal splittings
(14). The infinitesimal version of this sequence is ob




ferentials of the maps involved:
Lie(G)25 T,Q 25 1,8 (15)

Here we have identified the Lie algebra Lie(G) with T.G where e is the
identity element of the group G, and « is the differential of the map R, :
g — 9q at e. g is sometimes called the ‘infinitesimal action’ of G. In the
case of deformable body in three-space, G = SO(3), and Lie(G) is the space
of infinitesimal rotations. A vector w € Lie(G) represents an instantaneous
angular velocity. Thus Lie(G) can be identified with IR3. The infinitesimal
action a,(w) is the infinitesimal rotation of the configuration ¢ about the
axis w. In symbols a,(w)(X) = w x q(X) . Here the X’s serve to label the
points of the deformable body, so that q(X) € IR3 is the inertial position of
the body point labelled X when the body is in the configuration g. (Please
ignore the difference between bold face and plain ¢’s and X’s here. They
are all vectors.)

Sequence (15) is an exact sequence of linear maps: oq is one-to-one, dm,
is onto, and ker(dr,) = image(c,) . This can be seen can be obtained by
differentiating the condition of exactness of the bundle sequence (14).

Definition 2 The image of ag is called the ‘vertical subspace’ or simply
“yertical space” at q. It represents the space of all rigid deformations of q.
It is denoted by V.

We have V, = im(ag) = ker(dm,) = Ty(Gq) = Ty(r7'(s)). Note that o
provides a canonical isomorphism between Lie(G) and V;. The union of all
the V,’s is called the ‘vertical distribution’, denoted V C TQ.

We now give four equivalent definitions of connections.

Definition 3 A horizontal distribution (sometimes called an Ehresmann
connection) is a smoothly varying family

D, CcT,Q

of linear subspaces complementary to the vertical distribution and invariant
under the G action. Thus

TquvquDq
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and

Note that dr, restricted to D, is a linear isomorphism.

orphic to the direct sum T,S @ Lie(G). (This follows
d the fact that the infinitesimal bundle sequence,
in general, no canonically

T,Q is linearly isom
from linear algebra an
diagram ( 15 ) is exact.) However there is,

defined splitting.

variant splitting of the infinitesimal .

Definition 4 A connection is an equi
detail, a connection is a family of

bundle sequence (15 ). Said in more
linear isomorphisms
I, T.S® Lie(G) —» T,Q
and satisfying the following properties:
dry(Iy(v,0)) = v

agw = l(0,w)

depending smoothly on ¢ € Q

(the splitting properties) and
lgg(v, 9 w)=¢ ly(v,w)

(the equivariance property).

In these formulas v € T,S. In the last formula g - w denotes the adjoint
action of g € G on w. (Again, in the deformable body case is the standard
action of SO(3) on IR%.) And on the right hand side of this equation
g ly(v,w) denotes, by abuse of notation, the differential of the map ¢+ 994

applied to the vector l(v,w) € T,Q.

Definition 5 A horizontal lift is @ smoothly varying family of maps

h(q) : Tx(q) S — T,Q

such that
dr, o h(q) = identity on T,Q

h(gq) = gh(a)



Definition 6 A connection one-form is a smoothly varying family
r,:T,Q — Lie(G)
such that
Ty(ag(w)) =w
Lge = gI‘gg'l

(The first g of gT,9™! denotes the adjoint action of g on Lie(G). The
second g~! represents the action of G on Q.)

These four definitions are equivalent: an object satisfying any one defi-
nition canonically defines objects satisfying all others. They are all related
by linear algebra. Thus:

D, =1im h(g) = Ker T'y = lq(T,r(q) S & 0).
The reader can work out other relations. For example:
¢ =hg) @y

By abuse of language, an object satisfying any one of these properties may
be called a connection.

In terms of a local trivialization over U the connection one-form I’ must
have the form
[(z,9) = (dg + gA(z)dc)g ™" (16)
T is uniquely determined (over U) by the Lie(G) - valued one-form A(z)-dr
on U. A(z) = A(z, €) of eq. (3), (5).

Remark 6 In this last formula we ezpressed the adjoint action of G on
Lie G as w — gwg~! instead of the earlier w +—— gw Here w = Az)de.

Warning Most mathematical texts use right principal bundles as op-
posed to out left bundles. That is, they write the action of the group as
(¢,9) — qg. This leads to several sign differences when formulas are com-
pared to ours.
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There are situations in which @ has a natural connection. One is when
it has a Riemannan metric for which the G-action 13 by isometrices. Then
declare

D, =V}
where V, = im ay, and L is with respect to the metric on T,Q). Note that V,
1s the tanget space to the G orbit through g, which is also the fiber through q.
This is the situation with our class of examples. Take for the Riemannain
metric the metric defined by the Kinetlic energy of the deformable body.

3.4 Angular Momentum and Riemannian Submer-
sions

There is a nice situtation in which @ has a canonical connection and our
deformable body examples fits this situation. Suppose @ is a Riemannian
manifold and that G acts on @ by isometries. The vertical space V, is
as before: it is the tangent space to the orbit through q. We define the
horizontal distribution to be:

D, =V} ()

the orthogonal complement to the vertical space. The invariance of D under
the action of G follows immediately from the fact that G acts by isometries.

If G acts freely then equation 11 defines a connection on the principal
bundle G - Q@ — S = Q/G. Moreover S inherits a Riemannian metric
from @ by declaring that, for each g, The restriction of dr, is an isometry

D, » T,S, s=mn(q).

(Exercise: Show the resulting inner product on 7,5 is independent of the
choice of ¢ € 771(s).).

This gives @ — S then structure of a ”Riemannian submersion.”
Definition 7 A submersion 7 : Q — S is called Riemannian if Q and S

have Riemannian metrics such that dm, restricted to D, = ker(dm,)* is an
isometry for each ¢ € Q.
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In the case of a deformable body there is a canonical Riemannian metric

defined by the kinetic energy:
< b6q1,8q2 >= / < 8q1(X),8¢:(X) > dm(X) (18)
XeB

where B denotes a reference body, dm is the mass distribution and X €
B+— 6qi(X) € 1IR3, i = 1,2, are two deformations of the body, i.e. 8¢; €

7,Q-
Ifég, €V, CT,Qisa vertical vector then thereisanw € 1IR3 such that

6q,(z) = w x q(X))

And so
< 6q1,8¢2 >=< w,M(q,6q) >

where

M(g,601) = [ (a(X) x Saa(X))dm(X)
is the standard expression for the total angular momentum associated to the
deformation éqy of the configuaration ¢. It follows that 8qy is horizontal
iff M(q,éq1) = 0. Thus

D, = {6q € T,Q : M(q,6q) = 0}.

This is the basic fact which makes the language of connections on prin-
cipal bundles useful for the control of deformable bodies.

If the horizontal distribution D is defined by the vanishing of the angular
momentum M then the connection one-form T has the same kernel as M.

Consequently we must have :

I'(q) = R(¢)M(g, )

for some invertible transformation R(g) : Lie(G) — Lie(G). [Note: that T'
and M are both one-forms on @ with values in Lie(G) and they obey the
same transformation law with respect to the G action.] To find R(gq) we use
the normalization condition I'(g)(a(w)) = w for the connection one-form.
Now

M(g,v) = o (v)
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where

af : T,Q — Lie(G) = R?
is the transpose of the map
ag: Lie(G) = T,Q

(e is the infinitesimal G-action). The normalization condition becomes
R(g)ata, = identity. Therefore R(q) = (akay)™!. Now aza, = I(q) is the
locked inertia tensor. This yields the "master formula” equation (7), (8).

3.5 Parallel Transport: the Control Law

Definition 8 A vector or vector field is said to be horizontal if it lies in
D. A path is said to be horizontal if its derivatives all lie in D.

Our control law is that curves be horizontal.

With h denoting the horizontal lift operator, this control law is our
original equation, ( 1 ). Now it is called the equation of parallel transport.
It can be rewritten in the following ways

¢r=0

(cf. with eq. (5)) or

g € Dy(t)
The second of these has exactly the form of eq. (3) when written out in a
trivialization. (Cf. eq. (16).)

Any of these equations is called the equation of parallel transport. A so-
lution q(t) = ((t),g(2)) is called "the parallel transport of ¢'® along x(t)”.
Solving the equations of parallel transport for different initial conditions
¢(0) € Q defines a map
IP,Y . Qo - Ql

where

Qo = 71 (2(0)), @1 = 7~ '(2(1)),




and
Pq(0) = g(T)

Here v denotes the curve z[0,T] in shape space. IP, is called the parallel

transport operator along the curve 4. It is a crucial and easily proved fact

that this operator is independent of how the curve 7 is parameterized.

In the case of the deformable body IP., describes by how much the body
has rotated due to the sequence of shape changes z(t). This interpretation
is most meaningful when

2(0) = =(T)
so that the final and initial shapes are the same. Then the configurations
go = ¢(0) and ¢; = ¢(T) differ by a rigid rotation g, = g(T):

P, q(0) = o(T) = g(T)a(0)

In this case the parallel transport map is called the holonomy. It describes
the net reorientation of the body.

The parallel transport operators satisfy

1P,(gq) = gIPv(a)

and
IP‘Yz‘Yl =Py 0IP1

In terms of the deformable body, this first identity says that if we rigidly
rotate our body then perform a sequence of shape changes then the resulting
reorientation is the same as if we had first performed the sequence of shape
changes and then rotated the body. In the second identity v; and v, are
two paths such that the end point of v, is the initial point of v2. Then
71 - 72 stands for the single path obtained by joining the two paths together
at this common endpoint.

The parallel transport equations (3, 1) are solved in a local trivializa-
tion by letting M(t) be the fundamental solution to equation (3). Thus
M(0) =identity. Then g(t)=g(0)M(t) so that

IP(x(0), g(0)) = (x(T), g(0)M(T))

in the given trivialization.
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Remark 7 In the physics literature one finds the notation

t
M(t) = P exp{— /0 A(z)dr)
for the fundamental solution, and hence for the parallel transport generator.

7P exp” stands for "path-ordered ezponential” it has the following mean-
ing. Consider partitions 0 < t; <t < .. <1, <t of [0,t] for which the
mesh size goes to 0 as n — oo as in the definition of the Riemann integral.

Set &
a(s) = A(z(s)) - 5 (s).

Then

Pezp — /ot Adr = lim exp(—a(t1)) exp(—a(tz))...(exp(—a(t,))

3.6 Controllability and Curvature

Set

Xi(g) = k() - & ‘
where {e;} is a basis for the set of controls (a smooth local frame field for
S) and where h is the horizontal lift (control law eq. (1)). For example
we might take e; = g2, the coordinate vector fields, when (z',...,2") are
(local) coordinates on the shape space S. The X; are smooth horizontal
vector fields on Q. They form a frame (pointwise basis) for the distribution
D = image h.

Recall the following consequence of Chow’s theorem:

Theorem 1 Suppose that Q is connected. If the X; together with all of
their iterated Lie brackets [X;, X;], [ X:, [X;, X&]]... eventually span the tan-
gent space of Q at every point. Then our system 1 provides accesibility:
given any two points go,q1 € Q there is a control law u(t) which steers from

do to q1
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i':Remark 8 This theorem is, of course, valid for a general distribution, i.e.
E one not necessarily coming from a connection on o bundle. For treatments
~ of the theorem, see Chow [9], Rashevski [28], or Sussmann, §9.2 [91].

] One can algebracize the computations by thinking of the Lie bracket of
. horizontal vector fields at ¢ as a map

[s7]g: Dy x Dg— T,Q/ Dy
To do this take v,w € D, and extend them to smooth horizontal vector

fields V, W defined in a neighborhood of ¢. (Recall that horizontal means
takes value in D.) Then set

[v, w]y = [V, W](g)mod D,
_ To see that this is well-defined observe that
[FV, gW], = f(9)9(9V, Wl(g)modD,

for any smooth functions £ and g, i.e. the operation is "tensorial”: it really
only depends on v = V(g) and w = W(q) and not on their horizontal
extensions V,W.

Similar operations can be used to make tensorial sense out of higher
brackets. See Gershkovich and Vershik [12].

When D is the horizontal space of a connection on a principal bundle
then we have the splitting
D, ® Lie(G) = T,Q
so that we can and do identify
T,Q/D, = Lie(G).

Since D, = kerT', the identification is provided by the connection one-form.

Moreover we can use the horizontal lift operator hy to identify Tr(q)S with
D,.

Definition 9 The curvature form F at g is the negative of the Lie bracket
~[-,-], ot q after applying the above identifications. Specifically:

F(g)(v,w) = ~Ty([hqw; hawls)
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Here v,w € Ty(y)S. Thus F(q) 1s a skew-symmetric bilinear form (two-
form) on Tp(,)S with values in the vector space Lie(G).

The transformation law for the connection one-form I' implies that

F(gq) = gF(g)g™"

This transformation law is equivalent to saying that F is a two-form on S
with values in the ”adjoint bundle” which is a certain vector bundle over
S with typical fiber Lie(G) . Alternatively, by using h, o dr, instead of by
in the definition, we can think of F' as a two-form on Q with values in the
vector space Lie(G). As such one calculates:

F=dI' - [[,T]
or in a local trivialization
F(.’B,g) = g(dA - [Aa A])

Here

[T, T](v, w) = [[(v), (w)]

and

=TI'(v) x I'(w) for G = S0O(3)
with the last Lie brackets being those in Lie(G).

To prove these formulas use the Cartan’s formula
(dI)(X,Y) = (dT(Y))X) - (dT(X))Y) - (X, Y])
for the exterior derivative d and apply it to horizontal vector fields.
Remark 9 If G is Abelian, for ezample G= SO(2), then gF(q)g~* = F(q)

so that the curvature is an old-fashioned two-form on S. It can be defined
by n*F = dI.

The curvature form is a covariant derivative of the connection form.
We can directly relate higher covariant derivatives of the curvature form
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(DxF)(Y, 2), (DxDzF)(Y, W) etc., to the higher intrinsic Lie brack-
ets [heX, [ReY (9) hyZ))g, [heX, [heZ, [h.Y, h Wiy

As a result of these relations we have the following consequence
of Chow’s theorem [9](See Hermann [16] for more details. Also,
somewhere in Hermann’s 24 volume set. )

Theorem 2 [Ambrose-Singer Theorem] Suppose that @ is con-
nected. Suppose that for some g€ Q the image of the curvature
T, together with all of its covariant derivatives span Lie(G). Then
any two points qo,q1 of Q can be joined by a horizontal path.

Remark 10 The original The Ambrose-Singer theorem is more
general than this. We have given a computationally useful version
just as we did with the original Chow theorem.

Example 2 (again) Here A = a(zdy — yd&) The Lie algebra is
one dimensional and so Abelian: there is no [T, T} term. Thus

F=di=akAd

As long as a # 0 any two points can be joined by a horizontal
path.

4 Optimal Control

Consider a pointwise cost of the form
1
c= ER(z)(u, u)
and corresponding cost functional
T
Clz,u] = /0 c(z(t), u(t))dt.

R(z)(-,-) is an inner product (positive definite quadratic form) on
controls which depends smoothly on z € S. In other words, it is
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a a Riemannian metric on the shape space S. The cost C of a control
strategy is thus the corresponding integrated kinetic energy. Or, what is
effectively the same, the cost is the length of the corresponding projected
path z(t) = x(g(t)) in S. The problem is to minimize C among all controls

steering from go to q1 in time T.

Equivalently, we could fix shapes zo = m(g0), %1 = n(gq1) and a parallel
transport operator IP € Hom(Qo, Q1) where @; = 7x~1(z;). These two
types of boundary conditions are related by IP(qo) = d1. Thus I call the
problem the »isoparallel problem”. In case zo = 21 it is the isoholonomic
problem. Example 1 is the isoarea problem which is dual to the famous

isoperimetric problem.

We may think of the cost C as the 'efficiency’ of a given control strat-
egy. Thus our optimal control problem is to find the most efficient way to
deform a deformable body ao as to achieve a desired reorientation. This
problem was first formulated by Shapere and Wilczek [25] [26] in connection
with the question of how certain microorganisms swim. They solved the
corresponding linearized problem, that is, the case of infinitesimal shape

deformations.

;From a geometric point of view the natural cost to use is the length
of the path in shape space, or what is effectively the same, its integrated
kinetic energy. These are to be calculated with respect to the metric de-
fined in §3.4. The optimal control problem then becomes the problem of
finding that horizontal path which connects go to ¢1 in a time T and which
minimizes the integrated kinetic energy over this time interval.

The basic facts regarding the extremals to this problem are

Theorem 3 [20] The normal eziremals for the above optimal control probd-
lem obey the same differential equations as those of a particle under the
influence of the gauge potential A (cf. eq. (16)) travelling on the Rieman-
nian manifold (S,R). In case the group G is SO(2) (planar robot) these
are the standard Larentz equations which govern the motion of a charged

particle in the magnetic field F = dA.

Theorem 4 [22], [20] The abnormal eztremals are those horizontal curves
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F 4(t) such that there ezists a nonzero element p in the dual of Lie(G) such
 that p(F(4,)) =0

In case dim(Q) = 3, dim(G) = 1 (for ezample G = SO(2)) so that
dim(S) = 2 this condition implies that the projection z(t) = n(q(t)) lies on
the zero level set of the magnetic field B where F = BdS and dS denotes
the area form on S. If this level set is generic (dB # 0 when B = 0)
then every sufficiently short subarc of q(t) is the unique cost minimizing
path between its endpoints. Moreover in this case the abnormal extremal is
stable under perturbations of the cost and the control law (eg. 1) -

Remark 11 (Explanation) 7 Abnormal” refers to the fact that we can
take Mo = 0 when we compute the eztremals of MC + \G. Here C is the
cost function and G represents the horizontal constraints on the paths. See
Bliss [4], Hermann [16], and especially Morse and Myers [19] for more
information on normal versus abnormal curves.

The optimal control Hamiltonian H is the Hamiltonian defining the
differential equation for theorem 3.It is the Hamiltonian furnished us by
Pontrjagin’s principle in the normal case. To write it down, choose a local
frame of vector fields X, for S and calculate the matrix of inner products

Iu(T) = R(m)(X,,(x),Xu(a:))
let g*¥ be the inverse matrix. Then
H= %g“”(hX“)(hX.,)

where, as before, h denotes horizontal lift. Also, the hX,, being vector
fields on TQ, are fiber-linear functions on T*Q. Thus His a fiber-quadratic
function on T*Q.

5 Two Examples

Example 3 Ezample 1, revisited

d
X; = 5= =(1,0,0)
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0
X2=5;

o d
hX, = Pz +aygg
In coordinates these are the fiber linear functions

hXy = pz + aype
hX,; = p, — azps

Just replace 2 with p., etc.
9z

1
= 5{(p+ ayps)® + (py — 0zpe)’}

This is the Hamiltonian for a particle of charge py is a constant mag-
netic field of strength a. The solutions are circles as any textbook on

electromagnetism will say.

Example 4 The Falling Cat of Kane and Scher

Kane and Scher modeled the maneuver by which the falling cat, dropped
from upside down with zero angular momentum, rights itself. Their model
consists of two identical axially symmetric rigid bodies joined along their
symmetry axes by a special kind of joint (“no-twist”).

If the joint were instead a ball-and-socket joint (three degrees of free-
dom) and if we ignored collisions of the bodies then the configuration space
would be

Qb_, = SO(3); X 50(3)5.
The subscripts "f’ and ”b” stand for »front” and "back”. The subscript
“b-s” is for ball-and-socket.

Kane and Scher make the following beautiful choice of coordinates. Let
1; and 1; denote the axis of symmetry, the backbone, of the front and back
body halves. Let 1 denote the angle between 1, and 1;. As long as ¢ # 0,7
15 and 1, define a plane (O the plane which contains them and the joint.
The angles 8; and 6, will denote the angles made by the respective feet axes
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and 2, and this plane. The orientations are chosen so that @; increases as
f {he front rotates about the 1y axes, orientated toward the head, according
d rule. And 8, increases as the back half rotates about the

;; to the right han
toward the tail Then (¥, 8;,0s) coordinatize the

1, axis, oriented to point
re the subscript stands for ball-and-socket joint. To

" shape space Sp—» Whe
b Jefine coordinates on Qs—, we need 2 local section s : Sp-s — Qu-s. This

induces coordinates as in §3.1:

(d)’ehob, g) — gs(¢’ o.fveb)-

We choose the section s (choice of gauge) by insisting that the plane
/2 with the positive z-axis,

(o is the yz plane, that 15 makes an angle

that 1, makes the angle —1p/2 with the same, that when the coordinates
9;=0,=0 then the cat’s legs are lying in the plane, and that if in addition
¢ = m so that the cat is fully extended (backbone straight) then the feet are

pointed straigt up (cat upside-down). The negative z axis is the direction
of gravity.

honormal frame in the inertial frame associated

Let {e1, €2, e3} be the ort
) will denote the identity matrix corresponding

to these axes. e (no bold-face
to choice of section s. Set

% c=-cos(¢/2) = sin(1/2)

a of either body for resisting spinning
Then the total angular momentum M
6, e) — (’l/) + dip, 05+ &y, 0, + dbs, e)is

Let I; denote the moment of inerti
about its symmetry (17 or 1o ) axis.
generated by the deformation (2,05,

M = I;{[ces + sea]ds + [ces — seq|ds}

The moment of inertia tensor of the configuration s(#, 6y, 6,) with respect
to the inertial frame is the diagonal matrix
I(y) = ol diag[c* + (1 + B)s*,c* + as’,act +(1+ Bs*)]

where I; = I is the moment of inertia of either body half with respect to
any axis orthogonal to the symmetry axis, and
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is the ratio of moments of inertia and

where [ is the distance of the center of mass of either body half from the
joint and m is the mass of either body half.

Plugging these results into the master formula (8) for the connection
one-form where z stands for (¢, 8y, 6;) we obtain

a c(d9f+d9;,) _ as(cﬂf—cﬂb)
2a2+(1+8)s? = 2 c2+as?

A(z) =

Recall that the vector coefficients e; refer to infinitesimal rotations about
these axes.
The no-twist condition of Kane and Scher is

&B; = —db,.

We can think of this as saying that the cat is not allowed to break its own
back. Integrating we obtain

and so we set

We would like to thank Mark Enos at this point for pointing out that
the no-twist condition is not the same as connecting the two halves by a
U -joint (sometimes called a Hooke’s joint)!

The full connection-one form dg + gA(z) for the no-twist joint is then
{dx + ®(¥)D}eq

where
] = -7
W) =a5 P

and where we have written g = ezp(xez)= rotation about the y-axis by an

amount x.



369

, We have just proved the remarkable fact, observed by Kane and Scher,
'~ that for no-twist deformations the connection one-form is Abelian. Con-
sequently the re-orientation AX of the model cat due to a given shape
deformation can be calculated by a single quadrature. In bundle-theoretic
language, what has happened is that by restricting the joint to be no-twist

we reduce the structure group of the bundle from § O(3) to the (discon-
nected) group O(2).

The map 7 : @ — S in the no-twist case is the Hopf fibration S 0(3) —
IRP2, where IRP?2 denotes the real pro jective plane. This is another sur-
prise: the shape space for a no-twist joint is the real projective plane! This
fact can be seen algebraically by using Euler angle (i.e. exponential) coor-
dinates on SO(3), the ball-and-socket shape space, to express the no-twist
joint constraint. Then the no-twist shape space becomes identified with
ezp(IR?) C SO(3) where exp : IR? = Lie(SO(3)) — SO(3) is the usual
exponential map and TR2 is the xz plane. If we do not let the body halves
pass through each other then we destroy all topology: the shape space be-
comes diffeomorphic to a disc. In fact, if we imagine the body halves to be
infinitely thin rods then shapes we must delete are those with ¥ = 0. This
is a circle of shapes (vary 6 ) and corresponds to the line at infinity in the
classical conception of the projective plane. Thus the shape space in this
case is a classical affine plane.

The normal extremals for the optimal control problem are the trajecto-
ries of charged particles travelling on the real projective plane with metric
defined by the pointwise cost function. For more details concerning this
problem consult a forthcoming paper or write the author.

The abnormal extremals are the horizontal lifts of certain lines of latti-
tude ¥ = constant where the constants are the solutions to the equation

dd

E:O.
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6 Restrictions and Uses of the Dictionary

6.1 Restrictions

The control law must be linear in the control in order to be able to use the
dictionary. A partial extension exists for laws which are affine in control.

We require the control law u +— h(g)u to be maximal rank for all
g. In some cases this could be a significant restriction. We require the
aumber n of state variables to be greater than the number m of controls.
(The case m > n is trivial from a theoretical point of view.) Any control
system satisfying these propertites can always be put in local bundle form
of equation (3).

The dictionary is most useful for systems with some symmetry, namely
that of equation (4). It is even more useful if the number n —m (the
dimension of G) is much less than the number m of controls.

6.2 Utility

Some computations become extremely easy. For example we have shown
that using ideas from gauge theory it can be very easy to check controlla-
bility. The dictionary allows easy identification of important special curves
and submanifolds. For example, singular arcs lie on the surfaces {curvature
= 0 }. The dictionary can be used as an aid to intuition. For example,
solutions to the naturally formulated optimal control problems (quadratic
cost) are trajectories in a magnetic field defined by the curvature.

By using the dictionary, or at least its geometric philosophy, we can
find the correct formulations of some open problems in nonholonomic path
planning, for example the problem of feedback stabilization. See the next

section.



7 TFeedback Stabilization

Suppose the point go € Q is the desired goal. For example, it might repre-
sent the cat’s desired configuration: feet pointing down back slightly arched.
In feedback stabilization we try to design a feed back control law

u = u(q)

which steers all points in some neighborhood of go to go- Such a feedback
law is called a feedback stabilization strategy. We now cite the following
basic theorem of Brockett. [6].

Theorem 5 [Brockett] Let 4 = h(g,u) be the control law. If the map
(z,u) — h(z,u) does not map a neighborhood of {go}x controls onto a
neighborhood of 0, then there is no continous feedback stabilization strategy.

In our situation h can always be put in the form:
(z,g;u) — (u,—A(z, 9)u) € R™ x R
Points of the form (0,&),£ # 0 are never in the image of this map. Thus

our systems never admit continuous feedback stabilization laws.

However, if we give up the idea of stabilizing to a point and instead pick
a desired subvariety to stabilize onto we can achieve victory.

Example 5 Rewrite the Heisenberg flywheel in polar coordinates: (7, ¢)
for the xy-plane. Let us set z = 6. We will think of (r,4,2) as cylindrical
coordinates on three-space for the purposes of visualization. The system
becomes

f

¢ =1uz

: 2
z2=—=T U2
2

Our goal is to stabilize onto a circle of radius ry at a height z1. Set

uy = —c(r — 1)
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Uy =2 — 23

One easily calculates that the distance squared
V=(r-nrn)l+(z-n)

of a point from our objective circle is a Liapanov function. That is, % <0
everwhere and %(q) = 0 only for points on the unit cylinder. Thus we have
stabilized the system onto our circle by means of a feedback stabilization
law. Note that in order to do this we gave up all control of our position on
that circle.

In terms of our mass fly-wheel model we can feedback stabilize the
distance r of the mass from the fly wheel and the inertial angle of the
flywheel but not the angle of the rod. By a alternative strategy we could
have stabilized instead the rod angle or the difference of the two angles .

Example 6 Brockett has proposed the followoing generalization of Heisen-
berg’s flywheel:
T r=u

é =z Au
Here z,u € IR® and ¢ € Lie(SO(n)) = A’IRP. The feedback law

u=—{z
stabilizes the sytem onto the subvariety

{(x’é) 1€z = 0}'

A general framework is a follows. Suppose that our objective is to
feedback stabilize control system ( 1 ) onto the submanifold N C Q. We
say that N is transverse to the horizontal distribution D if

T,N + D, = T,Q for allg € N.
Let us suppose that N is defined by some equation: N = p~(yo) where

QLY
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s a smooth map and yo is a regular value of Y, that is, dp(T,Q) = Tp)Y
f whenever p(¢) = yo. If N is a smooth manifold with trivial normal bundle
 then it is always possible to write N in this way. We think of ¥ as the
 objectives. In our first stabilization example p(r, ¢, 2) = (r, 2).

The transversality condition on D and N translates to
dpy Dy = Tyig)Y
for ¢ € N. Now we suppose that dim(Y') = rank(D) which is the same as
dim(N) + number of controls = dim(Q).

Then dp, o h(q) is a linear isomorphism of the controls 4 onto the objectives
T,Y. The control law (1 ) induces the law

i = Z@ha)u

for the objectives. (gs and dp, are different symbols for the same thing.)
Choose coordinates so that yo = 0. Then the feedback law

ulg) = ~[Fa) o )] " -0 (19)

yields the differential equation y = —y. We have proved:

Theorem 6 Consider control law (1 ). Suppose N C Q is a submanifold
which is transverse to the control distribution and whose normal bundle is
trivial. Then feedback law ( 19 ) (locally) stabilizes the system onto N.

As a trivial illustration of the theorem take p : Q — Y to be the bundle
projection # : @ — S to be the bundle projection. One easily checks
the hypothesis. The induced control system on § is just £ = u which is
obviously feedback stabilizable.

Remark 12 Independent of this work, Bloch and Rehyhanoglu and Mc-
Clamroch came up with essentially the same idea for stabilization onto sub-
manifolds. See their preprint [2].
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As a final remark we would like to advertise a very recent result of Coron
which is much deeper than the just proved theorem.

Theorem 7 [Coron’s Theorem] Suppose that the distribution D is bracket
generating and that Q = IR®. Then there exists a time dependent feedback
control

u = u(z,t)

which is periodic in time:
u(z,t) = u(z,t + 1)

and under which the origin of Q becomes globally asymptotically stable. The
period T can be any fized positive number.

Remark 13 The proof of Brockett’s theorem is topological. The indez of
the vector field z — h(z)u(z) is an obstruction to stabilization. It seems
that the essence of Coron’s idea is that by suspending the control system
to one on Q x S the obstructions vanish. Coron’s theorem is of course
also true if Q is a general manifold and global stability is replaced by local
stability.
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