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Reviewed by Richard Montgomery

The problem of explaining planetary motion has been central to a great deal of math-
ematics and physics over the past three centuries. From the Newtonian perspective,
the fundamental problem is to analyze the motion of two bodies subject to an inverse-
square-law attractive force:
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where x, and x, are the positions of the two bodies as a function of time ¢, r =
[[x; — x3]| is the distance between them, m; and m, are their masses, and G is New-
ton’s gravitational constant. Translations, rotations, and time-translations are symme-
tries of (1): if x;(¢) is a solution, then so are x;(¢) + ¢ for any ¢ € R3, Rx;(¢) for any
rotation R, and x;(t + ¢) for any ¢ € R. Corresponding to each of these symmetries
is a quantity that is conserved in the sense that it remains constant along solutions:
namely, the total linear momentum

P =mvi +m;vy, )]
the total angular momentum
L =mx; X vi{ + myX; X V3, 3)
and the total energy

Gm,mz
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(where v; = dx;/dt).

These conserved quantities together with their associated symmetries can be used
to reduce the number of variables in (1). First, instead of taking the position vectors X;
as the dependent variables, we take r = x; — X, and Xcy, the position of the center of
mass of the system:

Xc mX; +myXp
M= .
my+m;
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By using a Galilean transformation x;(t) — x;(t) + tv, also a symmetry of (1), we
can arrange that P = 0, so that xcy is constant. It remains to solve for r. Subtracting
the second equation of (1) from the first, we obtain

d’r r

= =G(m; + mz)r—g, %)
an equation known today as the Kepler problem. Next, for a fixed value of the angular
momentum L, the motion of r takes place in a plane perpendicular to L. Introducing
polar coordinates (r, 8) in this plane (so r is still ir]|), one finds that the energy H is a
function of r alone:

L] (dr\* | ILIP | mimg mim;
H—Z[M<dt) + p,r2:| r’ #_m1+m2' ©
Consequently, the dynamics becomes encoded in a differential equation for r alone.
Using the differential relation [|L|| d¢ = ur? d6, one obtains a differential equation for
r as a function of 6 rather than of +—an equation that can be solved explicitly. The
solution curves r = r(6) are the conic sections of Kepler’s law.

Perhaps the biggest step forward in classical mechanics after Newton was Hamil-
ton’s reformulation of the subject. For the two-body problem, it begins by considering
the space of possible positions (x;, X) of the two bodies together with the space of
corresponding momenta (m,v,, m,v,). We denote the position space R*> x R3 by E
and identify the momentum space with the dual space E*; elements of E and E* are
conventionally denoted by ¢ = (q1,...,4s) and p = (py, ..., ps). If one considers
the energy H given by (4) as a function of ¢ and p, then Newton’s equations (1) are
equivalent to Hamilton’s equations

dg; 0H dp; aH

)

dt ~ ap;’ dt ~  dq;

That is, in the “phase space” V = E x E*, the solutions are the integral curves of the
vector field Xy = (V,H, -V, H).

The power of Hamilton’s reformulation (7) of Newton’s equations stems from
an underlying geometric structure, symplectic geometry. To wit, the vector space
V = E x E* carries a natural nondegenerate skew-symmetric bilinear form, or sym-
plectic form,

w((g, p), (¢', p")) = p(q") — q(p").

(Nondegeneracy means that if w((p, q), (p’,q")) = 0 for all (p’, q'), then (p,q) =
(0, 0).) In the language of differential geometry, w is a two-form:

w= de,- Adg;.

Now, given any smooth function f on V, its differential df is a one-form, and the sym-
plectic form w can be used to convert it into a vector field. Namely, the Hamiltonian
vector field X ¢ associated to f is defined by

w(Xs(x), &) = df (x)(),

where x = (g, p) € V and £ is a tangent vector at x; more concretely, X; =
(Vo f, =V, f). It is not hard to show that the flow generated by any Hamiltonian

April 2003] REVIEWS 349



vector field preserves the symplectic form w. When f = H, this flow describes the
time evolution of the two-body system.

The Hamiltonian method applies to very general problems in classical mechanics.
The “phase space” for a general problem is a symplectic manifold P, i.e., a mani-
fold equipped with a closed nondegenerate two-form w. Time evolution is by a one-
parameter group of transformations of P that preserve w. This group is generated by
the Hamiltonian vector field X, where H is the total energy function.

The idea of using symmetries and conserved quantities to reduce the number of
variables in the two-body problem also generalizes. In the general setting, a symmetry
group is an action of a Lie group G on a symplectic manifold P by transformations that
preserve the symplectic form. Given such an action, each element & of the Lie algebra
Lie(G) defines a vector field £p (the “infinitesimal generator”) whose flow preserves
the symplectic form. It is legitimate to ask that there be a linear and G-equivariant
map £ — J¢ from Lie(G) to the space of smooth functions on P such that &p is the
Hamiltonian vector field X ;¢. If such a map exists, as it does in almost all examples of
physical interest, the group action is called “Hamiltonian.” In this case, foreachz € P
the map £ — J(z) is linear, so we can regard J as a map from P to the dual space
Lie(G)*. As such, it is called the momentum mapping associated with the group action.

Suppose now that P is equipped with a Hamiltonian function H that is pre-
served by the group action, so that dH (£p) = O for all £ € Lie(G). Since dH(§p) =
o (X, Ep) = —dJ*(Xy), J is constant on trajectories of H and so is a “conserved
quantity.” (This is the Hamiltonian version of Noether’s theorem.) Now fix a value
v € Lie(G)* of the momentum. The group G acts on Lie(G)* by the coadjoint
action; let G, be the subgroup of G that preserves v. A theorem of Meyer and
Marsden-Weinstein states that the quotient space P, = {z € P : J(z) = v}/G, is it-
self a symplectic manifold, provided that G acts freely on P; it is called the symplectic
reduction of P at v. Moreover, the Hamiltonian function H descends to a function H,
on P,, and one is reduced to studying the dynamics of this lower-dimensional system
(P, H,).

In the case of the two-body problem (1), G is the group of translations and rotations
of R3, acting on the phase space (R? x R?) x (R* x R*)* in the obvious way. The Lie
algebra of G can be identified with R* x R?, representing the generators of translations
and rotations, and the translation and rotation components of the momentum map are
just the (physical!) linear and angular momenta given by (2) and (3). Moreover, the
reduced space P, (with v = (P, L), L # 0) can be identified with (0, 00) x R (with
coordinates r and p = u(dr/dt)), and the reduced Hamiltonian H, is (6).

The mathematics outlined in the preceding paragraphs is the subject of Stephanie
Frank Singer’s book, which uses the Kepler problem to introduce modern symplectic
geometry and the theory of symplectic reduction. To quote from its preface:

Chapter 1 presents the derivation of Kepler’s laws of planetary motion from Newton's laws of
gravitation in the style of a typical American undergraduate physics text. Chapter 8 presents
the same argument in the language of modern symplectic geometry. The chapters in between
develop the concepts and terminology necessary for the final chapter, providing a detailed
translation between the quite different languages of mathematics and physics.

Included in the intermediate chapters are introductions to (and motivations for) dif-
ferentiable manifolds and Lie groups. Singer does beautifully what she sets out to do,
getting to the core of her subjects with a minimum of fuss.
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I know of no other books filling the niche that this one fills. There are a number
of mathematical lecture notes and textbooks that cover symplectic geometry and re-
duction and their connections with mechanics, but all at a significantly more advanced
level. (Notable among these are Bryant’s lecture notes [3].) The only prerequisites
for Singer’s book are a familiarity with vector calculus and a passing knowledge of
college-level physics.

Beyond providing a working introduction to modern differential geometry and a
dictionary between nineteenth century physics and twentieth century mathematics, the
main achievement of this book is to provide readers with a ready entrance to the many
applications of symplectic geometry and to the exciting and beautiful recent develop-
ments in the area. We now describe a few of these applications and developments.

Symplectic manifolds arise in many contexts. The cotangent bundle of any manifold
carries a natural symplectic structure. Analysis on cotangent bundles plays a central
role not only in Hamiltonian mechanics (where the bundles arise as phase spaces), but
in the analysis of partial differential operators (propagation of singularities, pseudod-
ifferential operators, and Fourier integral operators; see Taylor [13]) and the theory of
nonlinear optimal control as formulated by Pontrjagin et al. [12]. On the other hand,
since the real and imaginary parts of a Hermitian inner product are a real inner product
and a real symplectic form, Riemannian and symplectic geometry meet in the realm of
complex manifolds to form the theory of Kihler manifolds (see Wells [16]).

Any Lie group G acts on the dual space of its Lie algebra by the coadjoint action.
Each orbit under this action carries a G-invariant symplectic structure. (In fact, the
orbit through v € Lie(G)* is the symplectic reduction at v, as described earlier, of the
cotangent bundle of G.) Kirillov, Kostant, and others, inspired by the idea of “quanti-
zation,” have developed a tight correspondence between the coadjoint orbits of G and
its irreducible unitary representations. This “orbit picture” has been a guiding principle
for modern developments in representation theory (see Wallach [15] and Vogan [14]).

Let X be a Hermitian n x n matrix with eigenvalues A4, ..., A,, and let diag(X) €
R" be the vector of diagonal entries (X, ..., X,,). A theorem of Schur asserts that
diag(X) lies in the convex polyhedron whose vertices are the points Qoqys + - o1 Aomy)
for arbitrary permutations o. This classic result can be placed in the context of sym-
plectic reduction. Indeed, let G be the unitary group U (n). The space of Hermitian
matrices can be identified with Lie(G)*. The U (n)-orbit through X is the set of all
matrices with the same eigenvalues as X (with the same multiplicities). The map
X — diag(X) turns out to be the momentum map for the action of the diagonal sub-
group of U(n) on this orbit. Guillemin and Sternberg [6] and Atiyah [2] have proved
a vast and beautiful generalization of this fact: Let P be a symplectic manifold on
which a torus T* (i.e., the k-fold power of the circle group) acts in a Hamiltonian
fashion. Then the image J(P) of P under the momentum map for the T* action is a
convex polytope in R¥ = Lie(T*), and the vertices of this polytope are the images of
the fixed points of the action. The proofs of this convexity theorem use Morse theory
in an essential way. The convexity theorem has led to a variety of surprising results in
combinatorics and representation theory (see, for example, Knutson and Tao [9]).

I would feel criminally negligent if I were to discuss symplectic geometry without
mentioning fantastic developments initiated by Arnol’d [1] and Gromov [S]. Amol'd,
based in part on his work on the motion of a charged particle traveling through a
magnetic field, conjectured that every symplectic map of a certain type (“exact”) on
a compact symplectic manifold has at least as many fixed points as a certain topo-
logical invariant (the sum of the Betti numbers if all the fixed points are nondegen-
erate). Floer proved a special case of Arnol'd’s conjecture by inventing what we now
call Floer homology. A crucial ingredient for Floer’s work was an earlier invention of
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Gromov, pseudoholomorphic curves—a kind of partial complex analysis available on
symplectic manifolds. Every symplectic manifold carries a natural volume form, and
every transformation that preserves the symplectic form is volume-preserving. Con-
sequently, two domains in phase space that are symplectically equivalent must have
the same volume. To what extent is the converse also true? Gromov used his theory
of pseudoholomorphic curves to construct symplectic invariants of domains finer than
their volumes, thus yielding answers to this question. The works of Arnol’d, Floer, and
Gromov have led to a new field of mathematics, “symplectic topology”; the reader can
consult Hofer and Zehnder [8] for a survey of this field.

One glaring omission in Singer’s bibliography is Milnor’s lovely exposition [10]
of the Kepler problem (5) that appeared in this MONTHLY almost twenty years ago.
There Milnor shows how the solutions to the Kepler problem with energy h corre-
spond to geodesics on a three-dimensional Riemannian manifold of constant curva-
ture —2h. Thus all the classical geometries—spherical (b < 0), Euclidean (h = 0),
and hyperbolic (A > 0)—are embedded within the Kepler problem! In particular, the
negative energy solutions correspond to geodesics on the three-sphere, on which the
four-dimensional rotation group SO(4) acts. Thus the Kepler problem (5) for nega-
tive energies has an unexpected SO (4)-symmetry. (A priori, the symmetry group of
the Kepler problem is the three-dimensional rotational group SO(3).) The problem
admits a corresponding momentum map with values in the dual of the Lie algebra of
SO (4), which is the sum of two copies of Lie(SO(3))* = R3. The first R* component
is the angular momentum L, and the second one is a vector quantity discovered by
Laplace but more commonly known as the Runge-Lenz vector. This S O (4)-symmetry
also exists in the quantum version of the Kepler problem; we recommend Guillemin
and Sternberg [7] for details and references.

I was lucky enough to attend a few lectures of S. S. Chern just before he retired from
Berkeley in which he said that the cotangent bundle (differential forms) is the feminine
side of analysis on manifolds, while the tangent bundle (vector fields) is the masculine
side. From this perspective, Hamiltonian mechanics is the feminine side of classical
physics. Its masculine side is Lagrangian mechanics, which is formulated in terms of
velocities (tangent vectors) rather than momenta (cotangent vectors) and focuses on
the Lagrangian L (the difference of the kinetic and potential energies) rather than the
Hamiltonian H (their sum). Trajectories x(¢) that solve Newton’s equations are those
that are extrema of the action A = [ L(x(¢), v(1)) dt.

Singer does not touch upon this masculine side of mechanics, a good choice given
the aims and scope of her book. However, Lagrangian mechanics is enjoying a resur-
gence within celestial mechanics, stemming in part from a 1970 paper of Gordon [4] on
the planar Kepler problem. Consider the class C; of all closed curves in the plane that
wind k times around the origin in a time period T without passing through it, i.e., with-
out colliding with the sun. Try to minimize the Kepler action over C. Gordon showed
that for k = 41 any Keplerian ellipse of period T minimizes, but that if [k| > 1,
then the infimum of the action over C; is not realized. Rather, take a near-collision
curve that comes within € of the origin, winds around k times, and returns to its start-
ing point. By letting ¢ — 0 one obtains a minimizing sequence that converges to a
Keplerian collision-ejection solution, i.e., one that collides with the sun and elasti-
cally rebounds. The collision-ejection solutions have the same action as the k = +1
Keplerian ellipses and lie on the boundary of every class C;. They allow one to pass
from C, for k # *1 to C,, and thus decrease the action by violating the no-collision
constraint. Gordon’s result plays a central role in the recent rediscovery and existence
proof by Chenciner and Montgomery [11] of figure-eight solutions for the planar
three-body problem.
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There are many more landscapes to explore from the base camp of the Kepler prob-
lem, but I am running out of space and starting to toot my own horn. In conclusion,
Singer has done an excellent job of leading the reader from the Kepler problem to a
view of the growing field of symplectic geometry.
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Wave Motion. By J. Billingham and A. C. King. Cambridge University Press, Cambridge,
UK., 2000, 468 pp. Cloth: ISBN 0-521-63257-9, $110. Paper: ISBN 0-521-63450-4, $37.95.

Reviewed by Jeffrey Rauch

The mathematics of wave motion is a subject of interest to pure mathematicians, ap-
plied mathematicians, scientists, and engineers, and it has been the subject of books
by people in all these disciplines. On the pure side, there are treatises on aspects
of the rigorous theory of partial differential equations. Life is harder on the applied
side, where one confidently uses ideas and computations that are not provably cor-
rect, and inductive reasoning from simple cases plays a large role. What, then, should
be the distinction between an “applied mathematics” treatment of the subject and a
“science/engineering” treatment?

In both types of books I expect to see mathematical modeling of physical phenom-
ena involving some simplifications and approximations, followed by some analysis of
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