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A geometrical approach for low Reynolds number swimming was introduced by
Shapere and Wilczek!. Here we pursue some developments for the two dimen-
sional theory. The outer membrane or the ciliary envelope of the planar organism
is represented by the conformal image of the unit circle. Power expenditures and
velocities can be computed using complex variable techniques. As an example,
we present the calculations for a self deforming ellipse. The results compare well
with observations for the nematode Turbatriz aceti. We also compute the most
efficient swimming stroke, using the criterion efficiency = velocity/hydrodynamical
power. A pattern noticed by SW for the circle and the sphere is confirmed: effi-
ciency is optimized around certain high order geometric modes. For the case of a
deforming membrane, these modes require great mechanical stress. However, such
high order geometric modes are easily emulated by ciliary envelopes without extra
(mechanical) power expenditure. Therefore, coordinated spatio-temporal ciliary
movements, besides providing an inherent maneuverability, have the added advan-
tage of saving energy.
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1 Introduction

We have been interested in nonholonomic motion and in microswimming since
two of us (JK and RM) listened an inspiring talk by Frank Wilczek at Cornell,
about ten years ago. Our general program was presented in 3 and in particular,
we described the collective “N-body probem” of microswimming. Here N can
be very large! (We hope this catchword to be somewhat related to Celestial
Mechanics.)

Microscopic organisms propel themselves in an inertialess environment.
Shapere and Wilczek}2, 1989, henceforth SW, showed that the rotation and
translation of a swimming circular organism can be described by the holonomy
of a connection on a principal bundle (whose structure group is the group of
Euclidean motions). Actually at this point the mathematical structure is
only formal: The base space is infinite dimensional and consists of all possible
shapes of the microorganism (the shape space) and could be modelled by a
convenient functional space of embedings.

If the amplitude of the swimming motions consist of small amplitude
surface oscillations (i.e a stroke), then the holonomy can be computed using
the curvature elements of this connection, computed at the average shape, the
base shape.

We report here our findings in the two dimensional context, the first re-
sults appearing in®. There are very powerful techniques for solving the Stokes
equations in the plane and it is possible to compute the Stokes curvature (the
covariant derivative of the Stokes connection) for any base shape that is the
conformal image of the circle. We present some corrections to SW (concern-
ing only the rotational part of the connection). We also compute the power
expenditure operator, details appearing in%.

We discuss the case of an elliptical swimmer. Two of the major modes
of swimming can be studied with this model: that of an organism with a
self deforming outer membrane, and that of a slender organism that uses
undulatory body motions. The results for the slender body using undulatory
cycles provide a good model for the nematode Turbatriz aceti.

We numerically compute the most efficient axially symmetric swimming
(the efficiency notion here is simply that efficiency = velocity/power). We
verify that they are governed by certain high order geometric modes, following
the same pattern as SW found for the circle and the sphere. Comparisons
between different efficiency concepts are given in 15,

It is most important to notice that for a deforming membrane, high or-
der geometric modes require great mechanical stress. On the other hand,
such high order geometric modes are easily emulated by ciliary envelopes,
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without extra mechanical power expenditure! Coordinated spatio-temporal
ciliary movements, besides providing an inherent maneuverability, have the
further advantage of saving energy®.

In an article to be submited elsewhere®, the curvatures for the three di-
mensional case of an ellipsoidal organism are presented, extending the results
of Lighthill® , Blake® , and Shapere and Wilczek? . With little extra work,
one can also make a direct comparison of a sphere with an infinite swimming
sheet for the swimming velocity, power output, and optimal combination of
tangential to normal components of the surface distortions.

2 The planar swimmer

The fluid domain is represented by the complex z-plane. A fluid velocity field
will be given by the real and imaginary parts of complex valued functions
v:C — C. The outer membrane or the ciliary envelope C of the planar
swimmer will be represented by the unit circle y = {£€ € C| [{| = 1} under
the conformal map

(@) = RE+ T T
s=w(e) = RE+ T+ + 50, (1)

where R is a real number. While the organism’s physical shape is represented
by a closed curve in the z-plane, we will make our computation of the curvature
in the £-plane where the organisms shape is parametrized by the unit circle.

As a basis (modes) for the vector fields on C we will choose the push
forward under composition (not using the jacobian matrix), of the basis of
Fourier modes on the unit circle: V = ¢™*!, where o = e*®. We call this the
hodographed Fourier basis, or for short, the Fourier basis. The order of the
modes is then tagged by index® n.

We will supress the vector notation thus V(o) is a complex valued function
on C representing the boundary vector field V, and v(z,2) is a complex
valued function on the exterior of C representing the fluid velocity field 7
with 7|, =

2.1 Stokes Equations in the plane

For the planar problem there is a very powerful technique, developed by
Mkhelishvili'! in the context of planar elasticity theory, that uses Cauchy inte-

%This suggests that Nature has found, by inventing cilia, a way to circumnvent a “mathe-
matical obstruction” for the efficiency of motion.

bAlthough the notations is coumbersome, we follow SW! notation for pourpouses of com-
parison.

3

grals to solve a functional equation which is equivalent to the Stokes equation
in the plane.

It is well known that the Stokes equations in the plane are equivalen
to the biharmonic equation A*¥ = 0, see Bachelor!? for instance. It is a1
elementary fact from complex function theory that biharmonic functions hav
a representation in terms of analytic functions. SW use this representation t
show that any solution can be written as

v(z,%) = ¢(2) — 26'(2) +9(2) (2

where ¢ and 1) are analytical functions called complex potentials by similitude
with Laplace equation in the plane. The boundary value problem for the
Stokes equations is therefore equivalent to solving a functional equation witt
boundary condition

V(s) = ¢(s) - s¢'(s) + 9(s) @3

where s is a coordinate on C. The point is to insert a boundary vector fielc
into the lefthand side of (3), then find the analytic extensions of ¢ and .
For boundary values on the unit circle SW matched power series coefficients
on both sides of (3). For conformal images of the circle the algebra becomes
much more complicated, and the use of Cauchy integrals seems to be the best
method of solution. The boundary data (3) pulled back to the unit circle
under the transformation (1) takes the form

V(o) = 4(0) - 2255) + 3. @)

w'(o)

The main tools for solving this functional equation are the following versions
of Cauchy’s theorem!!,

Corollary 1  (Cauchy’s theorem for infinite domains)

1 [ f(2)dz _ {—f({) + f(00), & outside C

2ri Jo z—-& 0, otherwise

)

for f analytic outside and continuous on C, a simple closed curve oriented
counterclockwise.

Corollary 2 A necessary and sufficient condition for the function f, contin-
uous on the unit circle v, to be the boundary condition of a function analytic
outside 7y is:

%y{%:o. (©)

for all & outside ~.
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The basic strategy of Muskhelishvili’s method is to use Cauchy’s theorem
for infinite regions to eliminate one of the analytic functions ¢ or ¥, in order
to determine the other function.

2.2 Shapere-Wilczek’s Connection and Curvature Forms

Appealing to the Stokes paradox, a form of which states that the only solution
to the Stokes equation corresponding to a rigid translation of a cylinder is a
rigid translation of the fluid as a whole, Shapere and Wilczek asserted that
the rotation and translation of the organism associated with a vector field
V(o) on the boundary of the organism that generates a velocity field v(z, 2)
can be determined from the asymptotics of that velocity field. Specifically

rot __ _ii_z_ -
ASW Im lim|z|—o0 27”:1)(2, Z), (7)
and
At = 92 (2 %) (®)
SwW iz

lim|z|—o00
One of the purposes of our paper is to provide some corrections and clar-
ifications to SW. It turns out that while formula for A®" is correct, A™ is not
(unless C is a circle). We provide the corrections in section 4.
By the general theory of connections, the curvatures are the infinitesimal
rigid motions R associated with traversing infinitesimal rectangles centered
at C in shape space, spanned by the vectors nVh and €Vh. More precisely,

RV, eVEYC =e“ C +b (9)
where w and b are written as
w = A" ([un, evp,))
= enFT% + enFoot + efFT% + EfF o, . (10)
and
b= A" ([vh, evpn))
= enFir 4+ eFL, + eiFi, + &Fps. (11)
The reason for choosing this particular decomposition of the Stokes curvature
form, as used by Shapere and Wilczek, will become evident in the examples.

For the calculations, one makes the change of variable z = w(£), in which A*"
becomes

o & e 5D
A - CC ) (12)

The expression for the Lie bracket pulled back to the £ plane is
Vo, Vi) = (Vi - V)n — (Vo - V)vm

(OO, o0 B0
Oum O, -
~ o€ 530 Ve (12

3 The Elliptical Swimmer (following the SW recipe)

We now compute the SW curvatures for the elliptical cylinder and apply tk
results to study swimming strategies for a nearly elliptical swimmer (we ca
this kind of swimmer a self deforming ellipse). It turns out that the rotation.
component according to SW’s recipe is not correct. We present it here for tt
sake of comparison with the corrected result in section 4).

The ellipse is given by the simplest conformal mapping, m; = M, all t}
others m; = 0. In fact, the transformation

2= w(€) = RE+ —"‘51) (v

maps the region exterior to the unit circle v in the ¢-plane to the regic
exterior to the ellipse C with semi-axis R(1 + M) and R(1-M ).
The hodographed basis

va(2(0)) = Aa™t1.
has a complicated explicit expression in the z-plane, namely, for
s = R (exp(if) + M exp(—ib)),

we have

vn(s) = exp(i(n +1)8) = A

1
<s V2 —4R2M>"+
R :

Fortunately, the calculations in the £ plane are feasible. The bounda
condition for the ellipse corresponding to formula (4) takes the form

2 e —— ———
8(0) ~ 2L 2T +9(@) = 2™, a
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Because the details of determining the solution to this equation parallel
those found in Muskhelishvili in his computation of the stresses on a plate
with an elliptical hole, will only state the results:

0 n>1
(&) =40 n=-1 (16)
Ml < -1,
and
X1 n>-1
Y ‘ n=—1
Y€)= €!1+14€22(n +1)M" n < -1 (17)

Substituting these into the formula for the vn(£) we obtain

: £2 (¢2 —
on(6,8) = 906) — 53 A T O + 9O (19)

Aé_n-l, n>-1
n=-1

A,
2 (n+ D) GHONE + £GP (n + 1)XE" n < 1

Expressions (7) and (8) for the connection may now be used to decompose
the boundary vector fields into horizontal and vertical parts.

Boundary Value Horizontal Projection|Vertical Projection
Mn(o) = Ae™n >0 |Ag™H! 0

Avg(o) = Ao 0 AT = ImA (19)
Av_1(0) = A 0 Al = )

M_g(0) = Ao? Mo~ = ImMMo~l  |AT = ImMA

Mn(0) = Aot n < =2{Ao™ ! 0

Caveat: the results for the rotational part are not correct, see Proposion ‘

3 in section 4.

To compute the Stokes curvature we compute the Lie bracket of horizontal
vector fields, re-expand the resulting vector field in terms of the Fourier basis,
then use the above table to determine the corresponding rigid rotation and
translation. As an example if m,n > —1,

i cum] = (e -+ o™+ — en(a+ o™ S (MR, (20)
: k=0

comparing this with the above table to determine the vertical components v
find that for m,n > —1

(m+1)M"~'3l n-m=j5>0
Fir. = and j is odd
0 otherwise.
(2
(n+1)M£3’l m-n=k>0
Fin = and k is odd @
0 otherwise.
Fir, = Fifn=0 2

For the circle M = 0 and the result of Shapere and Wilczek is recovere
the only modes that couple are those that differ by one. If M # 0 all mod
that differ by an odd number couple, although the strongest coupling tak
place between ones that differ by just one. The effects of coupling betwe:
distant modes becomes more pronounced the further the shape is from a circ.

3.1 Ezamples and discussion

Two examples will be presented, using only the translational part of the co
nection (so that the previous calculations are correct). The first, an anal
of the example of Blake’s swimming circular cylinders?, under symmetric
deformations. The second example will be that of a long thin organism th
swims utilizing the undulatory mode. The results of this model will be cor
pared with observations of the swimming motions of nematodes by Gray ai
Lissman.

For the first example consider an ellipse with semi-axis 1 - M and 1+ ]
and swimming stroke parameterized by:

M
S(o,t) = (o + —a—) + (.025 cos 2mt)v14 + (.025sin 2mt)v1s
+(.015 cos 27t)v1g + (.015sin 27t)v1g (2

To calculate the net translation of the swimmer the curvature componer
corresponding to the coupling of modes 14 and 15, 14 and 19, 15 and 18, and
and 19 are needed. After one swimming stroke the swimmer’s net translati
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Figure 1. Ellipse (M = 3) at t=0, 0.25, 0.5, and 0.75

is given by:
1 _ 1 _ 1 _
/ .7:14,130,14('115(# + / fls,fgalsdlgdt + / fls'ﬁalsdlsdt (25)
0 0 0

1
+ / Fi4 19014010d1
0
= .043 +.017M2% — .019M (26)

See Figure 1.

Next, the undulatory mode of swimming will be studied by taking the ec-
centricity of the ellipse to be large and the deformations to have purely imag-
inary coefficients. Because this strategy is used by swimmers of all Reynolds
numbers, this two dimensional model may provide a starting point for build-
ing models where the inertial forces are not negligible. J. Gray and HW.
Lissmann’ conducted an extensive study of the various locomotion modes of
Nematodes. They made observations and measurements of nematodes creep-
ing on top of gelatin and damp glass, gliding through densely packed suspen-
sions, and swimming through fluids. The present model will be applied to
the latter class of nematodes, the Turbatriz Acetii. While swimming in an
open fluid is clearly a three dimensional problem, the quantitative similarly

between the two and three dimensional cases suggests that we might obta
a reasonable model for the Tubatriz whose body motions were observed to !
essentially planar by Gray and Lissman.

The Turbatriz Acetiis a nematode which appears occasionally in domest
vinegar. It has a body length of about 840um and a diameter of 28u
Its ratio length/width ranges'® about 45. It swims by passing undulato
waves down its body. The observed wavelength was 712um, the frequen
is 5.2 sec—! or about one complete stroke every 1.9 seconds. The amplitu
was measured to be approximately 107um and observed speeds were 718y
per second, or 138um per stroke. Thus the foreword progress was was abc
16.5% of the worms length per stroke.

To model the Tubatrix pick as the base shape an ellipse with semi-axis .
and 1.94. Frequently the amplitude of the undulatory wave was observed
increase as it passed down the body of the nematode, the tail moving nea
four times as much as the head. This characteristic is related to the abil
of the nematode to swim without yawing. The yawing motion associated ti
particular swimming stroke is not detected by the present model because 1
side to side motion is zero on average. As a simple model, consider undulatc
swimming motions with a constant amplitude. The specific modes are chot
to best represent the observations of Gray and Lissman (1963), see Figure
The amplitude and ellipse size were chosen based on measurements of Gi
and Lissman. Parametrize the swimmer by:

.94
S(o,t) = o+ 97‘,’— + 173 cos 21t(va(0) +v_s(0)) + 1 7i sin 27t (va(0) + vs(c

(
The deformations are transverse to the long axis of the ellipse, and the ove
motion is purely translational. The curvature components corresponding
the coupling of the modes 3 and 4, 3 and —6, —5 and 4, and —5 and
are needed. In addition to formula (20) the following ones appear in
computation of curvature components thorough,

Ef__o(Ma‘z)ken(n +1)gm+ntl

Bun 0
5 0z ™

= -T2 o(Ma?)e(n + DefMo™ ™1, n < -1

0, n>-1
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Figure 2. Locomotion of Turbatriz aceti at t = 0,0.2,0.4,0.6,0.8 and 1.0

(oM

Bvn BE _ e e
—az_--a—%vm = ((n+1)&EgMo™" 1 (n+1)éno m+l) n< -1

efi(m + 1)o™ "+, n> -1

The resulting curvature coefficients are: Fya=4F¢_-5=4 F g3 =
4M, F_5 4 = 4, all other non-zero components being obtained by antisymme-
try. The net translation is then found by computing: '

1 ) 1 ) 1
/ F33a3(t)as(t)dt + / F_g,_za-s(t)a—s(t)dt + / F_s4a_5(t)as(t)dt
0 0 0

1
+ / F_g 16_5(t)as(t)dt.
0
(28)
The result of this integral is —0.71. After scaling, the predicted translation per
stroke is 154um, or 18% of its length. Recall that the observed translations

were approximately 16.5% of the length. The result seems quite good, in
spite of the simplifications, namely: the model is two-dimensional; only four

modes were excited, with constant amplitude; the correct Reynolds numt
is of order 1, in the limit of applicability of Stokes approximation; effects
order > 3 in the amplitude were not taken into account.

4 Mathematical details and corrections to SW

4.1 The canonical vs. the hodographed Fourier basis

Suppose that in Goursat’s representation for the solutions of planar Stol
equations:

o(2) = B + (#(2) - 62) ¢

we take 9 and ¢ holomorphic in the exterior of the closed curve C. Withe
loss of generality,

a— a—
G =aot+ =t
2 z

=" 24 (

z 22
The presence of a, is a “confession of debt” to Stokes’ paradox, si
there is no solution vanishing at infinity for the translation of a cylinder.
Write

—00 4
v(2) = %o + Z (vaﬁ) ,

k<0 \¢£=1
with
I _ %
(1,2) vt =2
v =1pk zZ) = —_
k ) vim =izk

34 — w'rea.l — zk _ szk_l
vl(c )= ¢k(2) - Z(MC(Z) = {wzm = 'i(zk _ kz-zk—l)

Thus for each k < 0 we have four terms, taking for ¢ and ¢ either z*
s2%. This is called the canonical basis. Observe that vi have good symme
properties with respect to conjugation z — Z and reflection z — —z. Howe
wy do not have these symmetries. This is already one good reason to sus|
that the canonical basis is not the best choice.

In Appendices A and B we obtain the curvatures for the circle, using
canonical basis. in Appendix C we show that in the case of the ellipse,
canonical basis does not allow a practical computation.



Let z = z(¢) the conformal map taking the exterior of ¥ = S1 to the
exterior of C. We transport “hodographly” the Fourier basis {0""’1} in 7y to
C, that is: .

Va(s) = (E(s))"'”, neZ.

We adopt the indexing n — n + 1 just to maintain the convention used by
SW.

In contradistinction with the canonical basis, the symmetry properties
are preserved by the hodographed Fourier basis. Suppose, for instance that
C is symmetric with respect to the z-axis. Taking real coefficients, we pro-
duce symmetric deformations for all n. With imaginary coefficients, we get
ondulating deformations.

The Fourier basis has other advantages. For any conformal map, half of
the problem to find the Stokes extensions is trivial: for n > —1 we take always
¢ = ¢! and ¢ = 0. As we will see in section 5, there are also remarkably
simple properties for the power expenditure operator.

4.2 Total force and total torque

A simplified version of Stokes’ paradox is given by the following
Lemma 1 If the potentials ¢ and ¢ have no singularities at 0o, as in (30)
then the total force vanishes:
/ fds=0
C

Proof. This follows from the identity
fds = —2uidU
where
U=¢(2)+2¢ .
In Appendix E we present a derivation of the force field
f=4uRe(¢'n) —2u(zF" =¥ . (31)

Actually, Stokes’ paradox implies that in order that the total force be
# 0, the potential U must contain a logarithmic term. Following Blake?,
Shapere and Wilczek! avoided the logarithmic singularities altogether, using
the following ‘
Criterion 1 Ezpand a vectorfield v(2) along C with respect to the canonical

basis (without logarithmic singularities). Then the translational component of
the connection 1-form is the constant term o.
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For the rotational component of the connection, we now present a correction’
regarding the rotational part.

Criterion 2 In dimension two the rotational part (as in dimension 3) is de
termined by the condition “total torque T =0".

In fact, we have

Lemma 2 Using the canonical basis,
T = 4rplmfb_1)
Proof. A simple calculation gives
tds = Im([Zf]ds = —2uRe(zdU] = —udF
where

F=2(f +¢) - —20+E+E

e[ (2)dz

Observe that ¢ is multivalued ifb_1 #0.

Remark 1 The reader may feel unconfortable with the presence of the co
stant rigid translations of the fluid as a whole, which do not decay at infinit
1 and i as allowable vectorfields. Can one do differently? the answer is ye
Translations of the shape can also be induced by stokeslets. However, the:
have even worse behaviour, logarithmic at infinity*t.

Thus, in two-dimensions, one can still define translation-horizontality u
ing the criterion “total force = 07, but this requires replacing the constal
vectors 1 and i by the two stokeslets, on the z and y directions. In a futu
work we plan to check if the criterion using stokeslets yields the same resul

for the connection.

4.8 The 1-form of the connection

Given a velocity field V along C, we denote (a,b) the translation and wk t
infinitesimal rotation such that

V — wiz —(a,b)
is horizontal. First, we introduce terminology.

Definition 1 If (a,b) = (0,0) we say V' is translationally-horizontal. If w
0 we say V is rotationally-horizontal.



46

Along C, we expand Vin terms of canonical components

—c0 4
w(e) =Tot 3 D%
k<0 £=1
(in practice, use 2 finite number, and approximate by least squares along C).
The terms in vk, k < 0 are translationally—horizontal, no matter the shape
of C.

The translational component of the connection 1-form can be obtained
from the asymptotics at infinity. Taking into account the decay of the elements
of the canonical basis, one obtains
Theorem 1 (Shapere and Wilczek?). Let 9(z,%) be the Stokes extension of
v(s) along C. Then

dz
AT = f —d(2,2 (32
lim|z|—00 2miz ( )
SW argue that v*(s) = v(s) — a(iz™t)|c with
z
_ L 3
a=Im 27m,v(z,z) (33)

lim|z|—00

is rotationally-horizontal. In other words, the rotational component of the
connection, would be

i
A%y =Im 22 (2, 2), (34)
lim|z|—00 T

This is not correct. Note that an infinitesimal rotation of C is (except for
the circle), a combination of i/Z with other elements of the canonical basis.
Hence, for the rotational part, it is not sufficient to consider the single element
i/Z in the basis, corresponding to ¢-1 with imaginary coefficient. In other
words, the flaw stems from the fact that, unless C is a circle, i/z|c does not
represent an infinitesimal rotation Re =iz|c -

4-4 Infinitesimal rotations: corrected formula
Consider a conformal transformation
m m
z=w(£)=R(£+—£l+--~+-§7n

from 7 to a curve C (we can also take n = 00). The following lemma is
obvious.

47

Lemma 3 The infinitesimal rotation with angular velocity w = 1, is given by

iz(¢) = iR(vo +miv—2t " + my v__(n+1)) (35)
where, in the right-hand side, v_x = exp(i(—Fk + 1)9) are elements of the
hodographed Fourier basis.

For each
k=0 k=-2k=—(n+ 1) (k=-1is absent),

we must compute the Stokes extensions of the hodographed vk (s)- Actually,
for each k we need to find “only” the coefficient b%, of P in the expansion
of v in terms of the canonical basis. In the proposition below we omit the
subscript —1 in the bk’s.

Proposition 1 For indices
k=0,k=-2, v k=—(n+1),
the rotational part of the connection is given by:
1 Im(b¥)
Arot - — .
(ve) R Re(b® +myb=2---+mn b—(n+1))
In fact, the vectorfields along C
N Imb*
Vg = Vk—
RRe(t® +my b2 +mn b= (n+1)

(36)

iR(vo+my v—2+ -+ Mn V_(n+1))

(37)
are rotationally-horizontal.
Conjecture 1 Following Ken Meyer’s talk in this Conference, our bet is 95%.
All the remaining elements of the hodographed Fourier basis are rotationally
horizontal (that is, for k>0 and for k < —(n+1) ). This involves findin
the asymptotics of the Stokes extensions for the corresponding elements of the
hodographed Fourier basis.

We now give a more intrinsic version for (36). In order to obtal
Arot(y) = a we require that (# — aiz)|c produces ze1o total torque. De
note T the operator yielding the total torque. From T(v — aiz) = 0 we ge
a=T(v)/T(iz) .

Theorem 2

2
Arot('u) = 51% RIEnOO Im (-2‘:-—1_; ‘*{ l_Rﬁ(Z) d2> ,

where Te = T(iz) is the torque associated to the infinitesimal rotation iz(:
of C.
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4.5 The ellipse. Rotational components.

We saw, in section 3 the expressions for the Stokes extensions ¢(£) and (&)
of the Fourier modes. We can write, for [£] > 1,

k
d(e)=af+ g+,

o=
WS T Re

We are interested in finding which k have nonvanishing coefficients b ;.
We claim that only vg,x and v_z » do have them. In fact, since

A — AR n=1_0
¥(E) = EMA ’_ﬁd'l MM\R ,
-t =R =2

(omitting the superscripts k)
it follows that the only nonvanishing b* ; occur for k¥ = 0 and k = —2. Hence
Lemma 4 The following expression for the total torque holds

%ﬁl = Im(RX) = —RIm()),
T(v-2,2) _

—MRIm()),
e RIm(})
in particular the rotational components of the connection are
4nuMR
AT Omg) = — BBy, ArtOwog) = —ATEME L.

TC TC’
To compute T, we consider the infinitesimal rotation iz|C = iz(C). The
Stokes extension is given by:
;(E) = iR(O'ma_l) = iRo + iRM/?l = vo,ir(0) + v-2,irm(0).

Thus the infinitesimal rotation of the ellipse requires two elements from
the hodographed Fourier basis, precisely those having coefficient s b%; # 0.
Now,

iR iRM2¢2+ M™!?

$(E) = -

§ ¢ e-M
- B _EMT
TR H
=_@f<1;_M"’)+..._

Lemma 5 The total torque associated to the infinitesimal rotation T(iz)
the ellipse is

Tc = —4nuR(1 + M?).
substituting the above expression in the expression for the rotational comp:

nents of the connection yields

Proposition 2 The rotational components of the connection at the basis ¢
ements vg,n and v_z ) are

= Wy,

: Im(\
A0 = 7 3

MIm(X)
rot —
A% (v_g ) = _—R(l 7E) = w_g.

in particular the following decomposition into rotationally-horizontal ar
purely rotational components holds

v(')‘,)‘(a) = (A——z’ Im{)) )cr  Im(A) 4

1+0m2)° iy’
M2Im() MIm()) _
v2a(0) = ()‘—Z 1+JV§2)> 7t 1+J\Eﬂ)a 1
Summarizing:
Theorem 3 Given

v(o) = ZUW\" (o) = Z Aot
along the ellipse. Then
AT (v) = Ay,
Arot(,u) = Im(Ao) MIm()‘—2)
R(1+M?2)  R(1+ M2’

The rotational components of the curvatures can be computed in a simila
fashion as in section 3, finding the b_; residues in the Lie brackets.

5 Power expenditure

5.1 The differential form fds = gdf

Forces can be represented by the same space V¢ of velocity vectorfields alon;
C, with the L? norm. Intrinsically, however, it is an abuse to consider

2uf =2u(2Re(¢'n) + (¥ — 2§")7) (38
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as an -element of Vo. Actually, the stress force is a differential form fds,
where s is arclength parameter along the curve C. It belongs to the dualspace
V*. In what follows we use the notation f = f(uv(s)) for the vector of forces
associated to the vector of velocities v(s) along C. We now explore (to our
benefit) the possibility of not identifying these spaces. We use the pull-backs
of the forces as forms to 7, under the conformal mapping z = z(€) sending
the exterior of the 7 to the exterior of C.
Proposition 3 Let s be the arc length parameter along the curve C, and ¢
the polar angle in the unit circle corresponding under the conformal mapping
= z(¢). Let f = f(v(s)) be the vector of forces associated to the vector of
velocities with complez potentials ¢, ¥, and let gdf denote the pullback of the
differential form f ds to the unit circle, so fds = gdf, then

g=IT+II+IIT+IV+V (39)
where . |
I= %0_1
Il = %—%a
_ _Hz dz/d¢
Il = d§> ———_—_dz/dﬁa
v - Qo P
dz/d{
V = 2()o WL L L
(dz/d£)?
(40)

The proof is a long but straightforward calculation, using the chain rule
and taking into account that § = o = exp(if) along <. Since we are using
hodographed velocity fields v(o) from v to C, the power expenditure is given
by the usual inner product

'P=2p,[7(v,g)d6;

where now we identify gdf with the vector field g € Vs, the space of vector
fields along ~.

- e T T
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Lorentz reciprocity'# carries over to this representation, in other words,
the operator

PV, =V, veg. (41)

is self-adjoint and positive. If we could determine the spectrum of P”, then
the task of computing power expenditures would be completely solved. We
assert that one of the advantages of the hodographed basis is that half of the
spectral problem is a free lunch!

In fact, for n > —1 we know that

p=¢0 4=0.
hence
v = a,——(n+l) — a,'n.+1
and
Ay D -1 — n+2 ~1 _ n+1
9=" =—(n+1)§ cl=—(n+1) oo =—(n+1)o

Theorem 4 For every conformal mapping z = z(§), f n+1 > 0, then ™!
is an eigenvalue of P7, with eigenvector —(n +1).

It is interesting to look what happens geometrically in the physical z-
plane. The force field f € Vo, is parallel (with opposing sense) to the velocity
field v(2(0)) = o™*1. The scale factor depends on the conformal mapping,

n+1

f=—(n+1)g;/—d§

To compute the power expenditure P, the scale factor disappears when
we change the integration to 7.

The difficult part of the spectral problem involves only the indices
n+ 1 < 0. The following proposition shows that they form an invariant sub-
space.

Teorem 5 The operator PY(v) = g leaves invariant the subspace of nega-
tive Fourier modes o™*1.

Proof. Use Lorentz reciprocity. Let m > 0; then

(P™), o™ = (Po™), ™) = [ ~ma™o™1ds =0
v
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5.2 Computing g for the ellipse; negative Fourier modes
Recall that for p < -1

14 M¢?
g-M

We insert in (39-40). In the denominators appear factors 1—Mo?2, coming
from the derivatives of 2(¢) and £2 — M, followed by conjugation (remember
g=0"1). Well, for0< M < 1

1 oo
_ 2
o7 = 2 M

=27, Y= Ap+ )¢t

n=0

We know, however, that in the final result for g, only negative powers of C
do appear. The term

_@ = p+1
II= dEa—-)\(p+ l)o

is in accordance, but the terms. I,I1I,IV,V are problematic. Nonetheless, a
“miracle” occurs:

Lemma 6 For the conformal mapping z = R(E+ M/£) of the exterior of unit
circle onto the exterior of the ellipse C, let f(AoP*1) denote the vector of forces
associated to the hodographed vector field Avpi1(0) = AoP*!, let gd@ denote
the pullback of the differential form f ds to the unit circle, so fds = gdf (see
Proposition 3), then I + III + IV +V =0, in particular forp+1 < 0,

f(AaPt)ds = Mp + 1)oP+! db.

Proof. A direct calculation.

Theorem 6 For the ellipse, the hodographed vector fields v(o) = oP+! for
p+1 <0 are also eigenvectors of PY : v — g, with eigenvalue p+ 1.

We think that this is indeed remarkable: when we vary the eccentricity 0 <

M < 1, using the hodographed Fourier basis, the power expenditure functional
does not change!

5.3 Hypotrochoids

The degree of algebraic difficulty increases, but we can still calcultate,
g(AoP+1)d@ for the hypotrochoids!?

z=R<5+§ﬂm), (42)

with m = 1,2,..., and M a positive constant satisfying 0 < mM < 1.

We present the results: "
Theorem 7 Consider the hodographed Fourier basis vp{o) = o Uﬂder the
conformal mapping (42). Then

1. Foranym € N, and n+1 2 0 v,(0) = o™l is an eigenvalue of the
Lorentz operator P (see 41) with eigenvalue, —(n +1).
9 Form =2 andn+1 < 0 the “miracle” (see Lemma (6)) still holds,

namely if fds = gdf is the pullback ot the form of forces and g = I +
II+IIT+ IV, asiin (40), then I+ III +1IV +V =0.

3. Form =3 and p+ 1 < 0 the same “miracle” holds, except forp= -2,
here for the hodographed vector field Av_2(0) = Ao,
— A —MX
9o = (-B+MB)™", B=T3m
so the eigenvalue is different from the others.

4. For m = 4 we found
g(,\o'_l) =-Ao 1+ Do 2

Here the hodographed Fourier basis is not an orthogonal basis for the
power ezpenditure operator.

6 Efficiency of an elliptic microswimmer

There are basically two competing efficiency notions for microswimr?i_ng. Con-
sider a swimming stroke of period 7, in shape space S and the ratio
X _ X/T _ mean velocity . (43)
E E/r  mean power
Froude’s efficiency is an non-dimensional quantity which result.s from mu}-
tiplying this ratio by a “characteristic force” T, and in the StokeS}an realm it
is equivalent (up to a shape dependent factor) to Lighthill’s efficiency

_ (mean velocity)? . (44)
mean power
The other notion, which we call SW efficiency (because Shapere and
Wilczek essentially use it) is given by

efL

X
-2 45)
efSW rE ) (
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where the presence 7 in the denominator is equivalent to consider all swimming
strokes with period 7 = 1. In this paper we will consider the latter notion,
and consider a variational problem first introduced by Shapere and Wilczek
leading to the most efficient strokes. For a comparison of the two notions,
seelS.

6.1 The variational problem

We expand the time-dependent, small shape deformations in terms of a basis,
so that the problem is linearized to a Lagrangian

£=1(Ked) - v3(Fad) | (46)

where the matrix K encodes the power expenditure, F' the curvatures, v is a
Lagrange multiplier. The Euler-Lagrange equations are

K¢=vFq . (47)
In other words, £ describes the problem of minimizing the energy expenditure
1 (7 ..
E= -—/ (Kg,g)dt ,
2Jo
for a prescribed holonomy

le/ (Fa,)dt .
2 Jo

Inserting
g=eVe'™ | (48)

where V is an eigenvector, gives

i
FV =XV , ,\=1—V- (49)
Define
W =KV , B= K1 FK~1 skewsymmetric, (50)
so that:

BW =AW . (51)

Taking into account that 7 = 2w/, the efficiency can be written as

XQ

= — 52
of= 7, (52)

T I e YL A W g
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where we omit the factor 2r. Some simple manipulations with F and X give

E= 02KV, V)r

X = —%Qe"’(}'V, V)r .

Since FV = AKXV, we get-
X0
7 =

Recall that A = i2/v is an eigenvalue of (51), and as expected, it is
purely imaginary. In short: Finding SW’s efficiency is equivalent to find the
supremum of the purely imaginary spectrum.

of = —iX, (53)

6.2 Numerical results

For the elliptical swimmer, undergoing symmetric swimming strokes, matrices
K and F are given in Appendix F. We found the spectrum using MathLab,
for M = 0 (circle), M = 0.1 e M = 0.2 (ellipses with small eccentricity) and
M =0.8 e M = 0.9 (high eccentricity).

Regarding the number of Fourier modes, we solved the problem exciting
the first five, the first ten, the first 30, and finally the ten modes between 30
and 39. Tables of results are available upon request.

Our observations are as follows. As expected, the absolute values increase
as more modes are considered. Interestingly, they do not diminish significantly
as we exclude the lower Fourier modes. This indicates, as shown by SW for
the circle and the sphere, that the more efficient strokes involve essentially
the high geometric modes.

In the table below we list the highest eigenvalues (51), for small and for
high eccentricities. -

M=0|M=01|M=02| M=08| M=09
First 5 modes 1.9906i | 1.9664i 1.94311 2.4541i 2.7878i
First 10 modes 2.40081 | 2.2845i 2.1826i 3.3162i 4.2483i
First 30 modes 2.7016i { 2.4884i 2.3139i 4.9168i 7.2448i.
10 modes,
from 30 to 39 2.65291 | 2.4717i 2.3134i

4.02991 5.65561

We have also considered very high order modes, between 30000 e 30009,
and we verified that there seems to exist a higher bound for all efficiencies, as
conjectured by SW? .
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The advantage of high order geometric modes supports Nature’s choice for
ciliary motion rather than deformations of a membrane. The mechanical stress
would be too strong for a membrane undergoing high order deformations. On
the other hand, it is quite easy to a ciliary envelope to emulate these motions.
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Appendix

A. The Lie bracket

Let z = x + iy, Z = = — iy. Denote

2-1(2-2). 23
8z 2 ’ T2

A vector field
is represented as

where f = a(z,y) + ib(z,y) = f(z,2).
Lemma 7 The Lie bracket @ = [&, 7] can be computed as follows:

_ _ 19z 9=z i _ _]iz 17 g
w=lu,v] = [‘g‘, ﬁ;] M [fz fz} [ﬁ] (54)
or as
0 =0
w=h§ +h5_£,
with
h=g.f+gzf — f-9 — f=9- (55)

Consider, for n,m < 0, the vectorfields

Vp =", Up =2™ —mzz™!
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written as differential operators as

o} 0
Un = —Z-na + Zn——z-
Um = (2™ —m2Z™ ) — + (Z™ m?z"“'l)ﬁ.
™ 0z
We obtain
[Un, Up] = p2"ZP ! — n2PZ" L. (56)

Curvatures for the circle

For the circle S, : 7 = a, the translational component of the curvature is
the constant term in the Fourier expansion of these brackets alongo S,. For
n < p < 0 we get

F (un,vp) = an+thr(Ulﬂ|, UIP|) =

1 27
=5 A (Un,vp)dd =

-1 2
_ antp (p gm0 _ e(p—n+1)i0) de.
2 0
Just the first integral can contribute, and only if p = n + 1, so that
+1
Ftr(glnl_glPly = n . 57
(i, oty = 22 (57)

B. Curvatures for the ellipse using the canonical basis

The ellipse
22 y?
2tE=!
is described in polar coordinates by r = r(6), with
cos?8  sin?9\ /?
r= (T + —bz—') . (58)

It is possible, but not practical, to compute directly the curvature coef-
ficients using the canonical basis. Let’s see why. To compute Firans(Un,Up),
we substitute (58) in (56). The two terms have the same absolute value,

cos?@ sin?6 —(p+n—1)/2
( a? b2 )
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but different phases
exp(i(n —p+ 1)8) and exp(i(p —n +1)6).

As a working hypothesis, suppose we will have only p + n odd (recall
p+nis < 0 ). The situation is not completely desperate, since the absolute
values as well as the phases are trigonometric polynomials. We must now
expand the bracket in the basis {v,,ws}. Assuming that we need just the
even negative n’s, we mould get finite trigonometric expressions on both sides.
However, finding the coefficients of the expansion becomes a very complicated
combinatorial-matricial problem.

C. Ellipse using the Fourier basis. More details.
Lie brackets
In the text we only gave the case m,n < —1. Form < -l and n > —1
we have:
’\ﬂj‘m k  n—m+1+2k
[AnVny A ] = Z (m-n)M"c —
. R

_ Z AnAm (m+ 1)Mk0.n+m+1—2k
R
k

Andm
+ ; T (m o+ 1)(k + 1) MEg TR

_ Z An];m (m + 1)(k + l)Mk+lo,—n—m—1+2k
k

For m,n < —1 one gets

bt = 5 0 e

k

An —n—m—
+Z an (n—m)(k+1)Mk+10’ n—m—142k
& )

A e
+; "R"‘ (m = n)(k + 1) MFkg—n—m+1+2%k |

+ zk: )\n‘;\m (m + l)Mko,n—m+l+2k _
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_ Z XﬂrA'm (n + l)Mko.-—'n+m+1+2k
P R
D. Formula for the Force f
Given a closed curve C, we dencte the exterior normal by
n= —ik
T ds
where s is the arclength, traversed counterclockwise.
Proposition 4
1. The pressure is given by
p = —4uRel¢’] (59)
2. The stress force at z € C is
f =4uRe(¢' n) —2u(2¢" -9 . (60)
3. The differential form fds can be written as
fds = ~2ip {(¢' + dz + (29" —W)di} (61)
Proof. We start with ¢ = f +4ig. The velocity components are u = f and
v = —g. Since f and g are harmonic, Au = Av = 0, Stokes equations are

satisfied with pressure p = 0. We compute the stress tensor:

€11 = fz= %(f:z: +gy)
1
€12 = E(fy “g:c) = fy = —Yz

1
€22 = —gy = —§(fx +gy)

We write the normal vector as n = p + iq. Then
<611 612)_(17) — <f:z: fy ),(P)z
€21 €22 q fy —fa q
-(£4) (-
fy fz —q

= (enn +iew)(p—ig)= ¥'7



Now we compute with ¢ = F + iG. The components of u + iv = ¢ — 2¢/ E. Matrices K and F for the elliptic swimmer
are We consider symmetric deformations, so all A, = 1.
u=F—zF, —yG,
v=G+zG; — yF;
Curvatures
A short calculation gives n\m| 0| 1 -2 2 -3 3 -4 4
Uy = —TFpy — yGzz 00| —% 0 0 0 -4 0 0
L Mt -2 M
Uy = Fy—szy—Gz—yGTU . - ;__1 & . (1) 2M2(1-M—1 . =
Vg = 2G; + Gy — YFup -2/ 00— 0 0 1 —2M74 0 0
T 20| 2 0 0 2441 -2 0 0
v ey — Ylay . 30l o EER DY’ 25} 0 0 Z |2 2M’iRM-1
using one the the Cauchy-Riemann equations, namely F; = G,. Using the M o |2EMe1] 3 0 0 31 4
other one, F, = —G, we obtain: = g 5 g g =z SEH ; OR
Au = —4F,,; ,Av = —4F,, . 4o| -2 0 0 |22MIiM-1 4 0 0
Hence, the pressure is
- Power expenditures
p=—4pFy = -2u(¢' + ¢'),
and the components of the stress tensor are: ‘ n\m|0]1]-2]2[-3[3]-4]4
; 0j1/0] 0 |0} O0]O]|] 01O
en = —~2Fa —yGaz | 1/0[2]0]0[0]0]0]0
e = 2Gey —yFzy (en1 = —e12) 1 —2]0(0] 1]0]0]0] 0]oO
1 2/0/0l o 3] 0jJolofo
e1i2 = - (vp + uy) = —zFy, —yF, :
2= 5 + 1) = T ¥l { ~3]0/0] 00 2]0] 00
In complex variables notation ’ 3;i0(0} 0 |J0O| 0 4| 0 |0
, — —-410]07 0 (0] 00| 3]0
—
en +ierr =~ Zj0Joj0j0] 0005

so that the force associated to ¢ is
—2u¢" 2T+ 2u(¢' + ) n
Everything together yields
f=2uf B—2ud" 27+ 2u(¢ + ¢ )n
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2-DIMENSIONAL INVARIANT TORI FOR THE SPATIAL
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We consider the circular Sitnikov problem as a special case of the restricted spa-
tial isosceles 3—body problem. In appropriate coordinates we show the existence
of 2-dimensional invariant tori that are formed by union of either periodic or
quasiperiodic orbits of the circular Sitnikov problem, these tori are not KAM tori.
We prove that such invariant tori persist when we consider the spatial isosceles
3—body problem for sufficiently small values of one of the masses. The main tool
for proving these results is the analytic continuation method of periodic orbits.

1 Introduction

The main objective of this work is to prove the existence of 2—dimensional
invariant tori filled of periodic or quasiperiodic orbits for the spatial isosceles
3—body problem. We note that in particular these tori are 2—dimensional
invariant tori for the general spatial 3—body problem. We start reducing,
with the help of appropriate coordinates, the dimension of the phase space of
the isosceles problem, obtaining in this way the reduced isosceles problem. We
see (in Theorem 2) that our tori filled of periodic or quasiperiodic orbits come
from periodic orbits of the reduced isosceles problem. Using the analytic
continuation method, we prove (in Theorem 6) the existence of symmetric
periodic orbits of the reduced isosceles problem, for sufficiently small values
of one of the masses, near the known periodic orbits of the reduced circular
Sitnikov problem (a particular reduced restricted isosceles problem). Finally
we analyze the 2—dimensional invariant tori of the isosceles problem that
come from those periodic orbits.

In this paper we present results without proofs. The proofs can be found
in Corbera and Llibre?, and they constitute the main results of the Ph. D. of
the first author.

63




